下列一元二次方程有兩個(gè)相等實(shí)數(shù)根的是( 。
A.x2﹣2x+1=0 B. 2x2﹣x+1=0 C. 4x2﹣2x﹣3=0 D. x2﹣6x=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,以M為頂點(diǎn)的拋物線與x軸分別相交于B,C兩點(diǎn),拋物線上一點(diǎn)A的橫坐標(biāo)為2,連接AB,AC,正方形DEFG的一邊GF在線段BC上,點(diǎn)D,E在線段AB,AC上,AK⊥x軸于點(diǎn)K,交DE于點(diǎn)H,下表給出了這條拋物線上部分點(diǎn)(x,y)的坐標(biāo)值:
x | … | ﹣2 | 0 | 4 | 8 | 10 | … |
y | … | 0 | 5 | 9 | 5 | 0 | … |
(1)求出這條拋物線的解析式;
(2)求正方形DEFG的邊長;
(3)請(qǐng)問在拋物線的對(duì)稱軸上是否存在點(diǎn)P,在x軸上是否存在點(diǎn)Q,使得四邊形ADQP的周長最?若存在,請(qǐng)求出P,Q兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關(guān)系.
[探究發(fā)現(xiàn)]
小聰同學(xué)利用圖形變換,將△CAD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根據(jù)“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 勾股 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關(guān)系是 .
[實(shí)踐運(yùn)用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點(diǎn)E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)在(1)條件下,連接BD,分別交AE、AF于點(diǎn)M、N,若BE=2,DF=3,BM=2,運(yùn)用小聰同學(xué)探究的結(jié)論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,▱ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF、GH過點(diǎn)O,且點(diǎn)E、H在邊AB上,點(diǎn)G、F在邊CD上,向▱ABCD內(nèi)部投擲飛鏢(每次均落在▱ABCD內(nèi),且落在▱ABCD內(nèi)任何一點(diǎn)的機(jī)會(huì)均等)恰好落在陰影區(qū)域的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在A處看建筑物CD的頂端D的仰角為α,且tanα=0.7,向前行進(jìn)3米到達(dá)B處,從B處看D的仰角為45°(圖中各點(diǎn)均在同一平面內(nèi),A、B、C三點(diǎn)在同一條直線上,CD⊥AC),則建筑物CD的高度為 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列說法正確的是( 。
A. 擲一枚硬幣,正面一定朝上
B. 某種彩票中獎(jiǎng)概率為1%,是指買100張彩票一定有1張中獎(jiǎng)
C. 旅客上飛機(jī)前的安檢應(yīng)采用抽樣調(diào)查
D. 方差越大,數(shù)據(jù)的波動(dòng)越大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,要測量A點(diǎn)到河岸BC的距離,在B點(diǎn)測得A點(diǎn)在B點(diǎn)的北偏東30°方向上,在C點(diǎn)測得A點(diǎn)在C點(diǎn)的北偏西45°方向上,又測得BC=150m.求A點(diǎn)到河岸BC的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com