【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)D作DE⊥BC交BC于點(diǎn)E,且DE=AD,F為DC上一點(diǎn),且AD=FD,連接AF與DE交于點(diǎn)G.
(1)若∠C=60°,AB=2,求GF的長(zhǎng);
(2)過(guò)點(diǎn)A作AH⊥AD,且AH=CE,求證:AB=DG+AH.
【答案】(1)GF=1;(2)證明見(jiàn)解析.
【解析】
(1)過(guò)G作GH⊥CD于H,根據(jù)三角形的內(nèi)角和得到∠CDE=60°,根據(jù)平行四邊形的性質(zhì)得到AD∥BC,AB=CD=2,得到∠ADC=120°,解直角三角形即可得到結(jié)論;
(2)根據(jù)全等三角形的性質(zhì)得到∠ADH=∠EDC,∠H=∠C,DH=DC,根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,推出∠DFA=∠C,在DH上截取HM=AH,得到∠HAM=∠HMA,求得∠DAM=∠H,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.
解:(1)如圖1,過(guò)G作GH⊥CD于H,
∵DE⊥BC,
∴∠DEC=90°,
∵∠C=60°,
∴∠CDE=30°,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB=CD=2,
∴∠ADC=120°,
∵AD=DF,
∴∠DAF=∠DFA=30°,
∴∠GDF=∠DFG,
∴DG=GF,
∵CD=2,
∴DE=CD=,
∴DF=,
∴HF=DF=,
∴GF=1;
(2)∵AH⊥AD,DE⊥BC,
∴∠DAH=∠DEC=90°,
在△DAH與△DEC中,,
∴△DAH≌△DEC(SAS),
∴∠ADH=∠EDC,∠H=∠C,DH=DC,
∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠DAB=∠C,∠DFA=∠BAF,
∵AD=DF,
∴∠DAF=∠DFA,
∴∠DFA=∠C,
如圖2,在DH上截取HM=AH,
∴∠HAM=∠HMA,
∴∠H=180°﹣2∠HAM,
∵∠MAD=90°﹣∠HAM,
∴∠DAM=∠H,
∴∠MAD=∠GFD,
在△ADM與△FDG中,,
∴△ADM≌△FDG(ASA),
∴DM=DG,
∵AB=CD=DH=HM+DM,
∴AB=AH+DG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD,過(guò)點(diǎn)A作BC的垂線,垂足為E,∠BAE=30°,BC=2,AE=,則點(diǎn)B到直線AC的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、F、C、E在一條直線上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
(1)求證:△ABC≌△DEF;
(2)求證:AD與BE互相平分;
(3)若BF=5,FC=4,直接寫(xiě)出EO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD,E、F兩點(diǎn)在對(duì)角線BD上,且BE=DF,連接AE,EC,CF,FA.
(1)求證:四邊形AECF是平行四邊形.
(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接寫(xiě)出圖中所有與AE相等的線段(除AE外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)的經(jīng)濟(jì)總量已居世界第二,人民富裕了,有的家庭擁有多種車型.小紅家有A、B、C三種車型,已知3輛A型車的載重量與4輛B型車的載重量之和剛好等于2輛C型車的載重量;4輛B型車的載重量與1輛C型車的載重量之和剛好等于6輛A型車的載重量.現(xiàn)有一批貨物,原計(jì)劃用C型車10次可全部運(yùn)完,由于C型車另有運(yùn)輸任務(wù),現(xiàn)在安排A型車單獨(dú)裝運(yùn)12次,余下的貨物由B型車單獨(dú)裝運(yùn)剛好可以全部運(yùn)完,則B型車需單獨(dú)裝運(yùn)_____次(每輛車每次都滿載重量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠B=60°,M為AB的中點(diǎn).動(dòng)點(diǎn)P在菱形的邊上從點(diǎn)B出發(fā),沿B→C→D的方向運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,MP 2=y,則表示y與x的函數(shù)關(guān)系的圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條筆直的公路穿過(guò)草原,公路邊有一衛(wèi)生站距公路的地方有一居民點(diǎn),、之間的距離為.一天某司機(jī)駕車從衛(wèi)生站送一批急救藥品到居民點(diǎn).已知汽車在公路上行駛的最快速度是,在草地上行駛的最快速度是.問(wèn)司機(jī)應(yīng)在公路上行駛多少千米?全部所用的行車時(shí)間最短?最短時(shí)間為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在菱形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線B→C→D→B運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過(guò)的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。
A. B. C. 5D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD 和正三角形 AEF 都內(nèi)接于⊙O,EF 與 BC,CD 分別相交于點(diǎn) G,H,則 的值為( )
A.B.C.D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com