【題目】二次函數y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數)在–1<x<4的范圍內有實數解,則t的取值范圍是
A. t≥–2 B. –2≤t<7
C. –2≤t<2 D. 2<t<7
【答案】B
【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數值的范圍為﹣2≤y<7,由于關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,然后利用函數圖象可得到t的范圍.
拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,
∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),
當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,
當﹣1<x<4時,﹣2≤y<7,
而關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,
∴﹣2≤t<7,
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,D 為∠BAC 的外角平分線上一點并且滿足 BD=CD, 過 D 作 DE⊥AC 于 E,DF⊥AB 交 BA 的延長線于 F,則下列結論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結論有______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點在格點上.
(1)作出與△ABC關于x軸對稱的圖形△A1B1C1;
(2)求出A1,B1,C1三點坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結果保留一位小數).(參考數據:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果店以每千克6元的價格購進蘋果若干千克,銷售了部分蘋果后,余下的蘋果每千克降價3元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關系如圖所示,請根據圖象提供的信息完成下列問題:
(1)降價前蘋果的銷售單價是 元/千克;
(2)求降價后銷售金額y(元)與銷售量x(千克)之間的函數表達式,并寫出自變量的取值范圍;
(3)該水果店這次銷售蘋果盈利了多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.
(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.
(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.
②設菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點,E是BF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數學問題,如圖2.已知鐵環(huán)的半徑為25 cm,設鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=.
(1)求點M離地面AC的高度BM;
(2)設人站立點C與點A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.
(1)求證:四邊形ENFM為平行四邊形;
(2)當四邊形ENFM為矩形時,求證:BE=BN.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com