【題目】如圖,在△ABC中,AB=AC=10,tan∠A=,點O是線段AC上一動點(不與點A,點C重合),以OC為半徑的⊙O與線段BC的另一個交點為D,作DE⊥AB于E.
(1)求證:DE是⊙O的切線;
(2)當⊙O與AB相切于點F時,求⊙O的半徑;
(3)在(2)的條件下,連接OB交DE于點M,點G在線段EF上,連接GO.若∠GOM=45°,求DM和FG的長.
【答案】(1)見解析;(2)r=;(3)DM=,FG=
【解析】
(1)連接OD,根據(jù)等腰三角形判斷出∠ABC=∠ACB,進而得到OD∥AB即可得到求證;
(2)連接OF,根據(jù)切線得到△AOF是直角三角形,根據(jù)tan∠A=,設半徑OF=OC=r,則可表示出AF=r,AO=10-r,勾股定理求出半徑即可得到結果;
(3)現(xiàn)根據(jù)題意證出ODEF是正方形,求出BE,再根據(jù)△BEM∽△ODM,即可得到MD;在EF延長線上截取FT=DM,證明出OT=OM,再證明△OGT≌△OGM,則GM=GT=GF+FT=GF+DM,設出GF=a,根據(jù)勾股定理求解即可.
解:(1)證明:連接OD
∵OC,OD均為⊙O的半徑,
∴OC=OD,
∴∠DCO=∠CDO
又∵在△ABC中,AB=AC,
∴∠ABC=∠ACB
∴∠ABC=∠CDO,
∴OD∥AB
∵DE⊥AB,
∴DE⊥OD
∴DE是⊙O的切線.
(2)解:連接OF,設⊙O的半徑為r,則OF=r,OC=r
∵⊙O與AB相切于點F,
∴AB⊥OF,
∴∠OFA=90°,
在Rt△AOF中,∠OFA=90°,OF=r,tan∠A=
∴AF=r,
∴AO=r
又∵AO=AC-OC=10-r,
∴r=10-r
∴ r=.
(3)由(2)知r= ,
∴AF=r=
∵∠ODE=∠DEF=∠OFE=90°,
∴四邊形ODEF是矩形
∵OF=OD,
∴矩形ODEF是正方形,
∴DE=EF=OF=
∴BE=AB-AF-EF=10--=
∵∠BME=∠OMD,∠BEM=∠ODM=90°
∴△BEM∽△ODM,
∴
即 = ,解得DM=
在EF延長線上截取FT=DM
∵四邊形ODEF是正方形,
∴∠OFT=∠ODM=90°,OF=OD
∴△OFT≌△ODM,
∴∠2=∠1,OT=OM
∵∠DOF=90°,∠GOM=45°,
∴∠GOF+∠1=45°,
∴∠GOF+∠2=45°
即∠GOT=45°,
∴∠GOT=∠GOM
又OG=OG,
∴△OGT≌△OGM,
∴GM=GT=GF+FT=GF+DM
設GF=a,則EG= -a,GM= +a,且EM=DE-DM=-=
在Rt△EMG中,EM 2+EG 2=GM 2,即()2+(-a )2=(+a )2,解得a=
∴FG的長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以ABCD的邊BC為直徑的⊙O交對角線AC于點E,交CD于點F.連結BF.過點E作EG⊥CD于點G,EG是⊙O的切線.
(1)求證:ABCD是菱形;
(2)已知EG=2,DG=1.求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線:和拋物線:,其中.
下列說法你認為正確的序號是______;
拋物線和與y軸交于同一點;
拋物線和開口都向上;
拋物線和的對稱軸是同一條直線;
當時,拋物線和都與x軸有兩個交點
拋物線和相交于點E、F,當k的值發(fā)生變化時,請判斷線段EF的長度是否發(fā)生變化,并說明理由;
在中,若拋物線的頂點為M,拋物線的頂點為N,問:
是否存在實數(shù)k,使?如存在,求出實數(shù)k;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,∠A≠∠B.
(1)請利用直尺和圓規(guī)作出△ABC關于直線AC對稱的△AGC;(不要求寫作法,保留作圖痕跡)
(2)在AG邊上找一點D,使得BD的中點E滿足CE=AD.請利用直尺和圓規(guī)作出點D和點E;(不要求寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在四邊形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=4,BC=6.
(1)如圖1,P為AB邊上一點,以PD,PC為邊作平行四邊形PCQD,過點Q作QH⊥BC,交BC的延長線于H.求證:△ADP≌△HCQ;
(2)若P為AB邊上任意一點,延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE.請問對角線PQ的長是否存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.
(3)如圖2,若P為DC邊上任意一點,延長PA到E,使AE=nPA(n為常數(shù)),以PE,PB為邊作平行四邊形PBQE.請?zhí)骄繉蔷PQ的長是否也存在最小值?如果存在,請求出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠B=36°,AD是斜邊BC上的中線,將△ACD沿AD折疊,使點C落在點F處,線段DF與AB相交于點E.
(1)求∠BDE的度數(shù).
(2)求證:△DEB∽△ADB.
(3)若BC=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知動點A在函數(shù)的圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點M、N,當NF=4EM時,圖中陰影部分的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)交軸于點、,交軸于點,在軸上有一點,連接.
(1)求二次函數(shù)的表達式;
(2)若點為拋物線在軸負半軸上方的一個動點,求面積的最大值;
(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標,若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com