【題目】在△ABC中,∠BAC=45°,CD⊥AB于點(diǎn)D,AE⊥BC于點(diǎn)E,連接DE.
(1)如圖1,當(dāng)△ABC為銳角三角形時(shí),
①依題意補(bǔ)全圖形,猜想∠BAE與∠BCD之間的數(shù)量關(guān)系并證明;
②用等式表示線段AE,CE,DE的數(shù)量關(guān)系,并證明;
(2)如圖2,當(dāng)∠ABC為鈍角時(shí),依題意補(bǔ)全圖形并直接寫出線段AE,CE,DE的數(shù)量關(guān)系.
【答案】(1)①補(bǔ)全圖形,如圖1所示.見解析;猜想:∠BAE=∠BCD. 理由見解析;②見解析;(2)補(bǔ)全圖形,如圖3所示. 見解析;線段AE,CE,DE的數(shù)量關(guān)系:CE-DE=AE.
【解析】
(1)①依題意補(bǔ)全圖形,由直角三角形的性質(zhì)得出∠BAE﹢∠B=90°,
∠BCD﹢∠B=90°即可得出∠BAE=∠BCD;
②在AE上截取AF=CE,可證出△ACD是等腰直角三角形,得出AD=CD,可證明△ADF≌△CDE,得出DF=DE, ∠ADF=∠CDE,可推出∠CDE﹢∠FDC=∠EDF=90°.證出△EDF是等腰直角三角形,得出EF=,即可得出結(jié)論;
(2) 在CE上截取CF=AE,連接DF由CD⊥AD,AE⊥BC,可得∠EAD=∠DCF
由∠BAC=45°可得AD=CD,可證△ADE≌△CDF,可得ED=DF∠ADE=∠CDF,可推出∠EDF=90°可得△EDF是等腰直角三角形故 ,即可得線段AE,CE,DE的數(shù)量關(guān)系.
(1)①依題意,補(bǔ)全圖形,如圖1所示.
猜想:∠BAE=∠BCD.
理由如下:
∵CD⊥AB,AE⊥BC,
∴∠BAE﹢∠B=90°,
∠BCD﹢∠B=90°.
∴∠BAE=∠BCD.
②證明:如圖2,在AE上截取AF=CE.
連接DF.
∵∠BAC=45°,CD⊥AB,
∴△ACD是等腰直角三角形.
∴AD=CD.
又∠BAE=∠BCD,
∴△ADF≌△CDE(SAS).
∴DF=DE, ∠ADF=∠CDE.
∵AB⊥CD,
∴∠ADF﹢∠FDC=90°.
∴∠CDE﹢∠FDC=∠EDF=90°.
∴△EDF是等腰直角三角形.
∴EF=.
∵AF+EF=AE,
∴CE+DE=AE.
(2)依題意補(bǔ)全圖形,如圖3所示.
在CE上截取CF=AE,連接DF
∵CD⊥AD,AE⊥BC
∴∠ADC=∠AEC=90°
∴∠EAB+∠ABE=90°,∠DBC+∠DCF=90°,∠ABE=∠CBD
∴∠EAD=∠DCF
∵∠BAC=45°
∴∠DCA=45°
∴AD=CD
又∵CF=AE
∴△ADE≌△CDF
∴ED=DF
∠ADE=∠CDF
∵∠CDF+∠ADF=90°
∴∠ADE+∠ADF=90°
∴∠EDF=90°
∴△EDF是等腰直角三角形
∴
∵CE=CF+EF
∴
∴線段AE,CE,DE的數(shù)量關(guān)系:CE-DE=AE.
故答案為:CE-DE=AE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了在校運(yùn)會(huì)中取得更好的成績(jī),小丁積極訓(xùn)練.在某次試投中鉛球所經(jīng)過的路線是如圖所示的拋物線的一部分.已知鉛球出手處A距離地面的高度是米,當(dāng)鉛球運(yùn)行的水平距離為3米時(shí),達(dá)到最大高度的B處.小丁此次投擲的成績(jī)是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2﹣2x+3
(1)求出頂點(diǎn),并畫出二次函數(shù)的圖象.
(2)根據(jù)圖象解決下列問題
①若y>0,寫出x的取值范圍.
②求出﹣≤x≤2時(shí),y的最大值和最小值.
③求出﹣5<y<3時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公司要建一個(gè)矩形的產(chǎn)品展示臺(tái),展示臺(tái)的一邊靠找為9m的宣傳版(這條邊不能超出宣傳版),另三邊用總長(zhǎng)為40m的紅布粘貼在展示臺(tái)邊上.設(shè)垂直于宣傳版的一邊長(zhǎng)為
(1)當(dāng)展示臺(tái)的面積為128m2時(shí),求的值;
(2)設(shè)展示臺(tái)的面積為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象和都在第一象限內(nèi),,軸,且,點(diǎn)的坐標(biāo)為.
(1)若反比例函數(shù)的圖象經(jīng)過點(diǎn)B,求此反比例函數(shù)的解析式;
(2)若將向下平移(m>0)個(gè)單位長(zhǎng)度,,兩點(diǎn)的對(duì)應(yīng)點(diǎn)同時(shí)落在反比例函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+(m﹣1)x+m的對(duì)稱軸為x=,請(qǐng)你解答下列問題:
(1)m= ,拋物線與x軸的交點(diǎn)為 .
(2)x取什么值時(shí),y的值隨x的增大而減?
(3)x取什么值時(shí),y<0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點(diǎn)E,交于點(diǎn)D,連接CD、OD,以下三個(gè)結(jié)論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項(xiàng),其中所有正確結(jié)論的序號(hào)是( )
A.①②B.②③
C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的兩個(gè)頂點(diǎn),在反比例函數(shù)的圖象上,對(duì)角線與的交點(diǎn)恰好是坐標(biāo)原點(diǎn),已知點(diǎn),.
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)是軸上一點(diǎn),若是等腰三角形,直接寫出點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2.
(2)求點(diǎn)C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com