【題目】若干人乘坐若干輛汽車,如果每輛汽車坐22人,有1人不能上車;如果有一輛車不坐人,那么所有旅客正好能平分乘到其他各車上,則旅客共________人.

【答案】45529.

【解析】

設(shè)起初有汽車m輛,開走一輛空車后,平均每輛車所乘旅客為n人,依題意有22m+1=n(m-1)然后確定m、n的值,進(jìn)而可得答案.

設(shè)起初有汽車m輛,開走一輛空車后,平均每輛車所乘旅客為n人.依題意有

22m+1=n(m﹣1).

所以n==22+

因?yàn)?/span>n為自然數(shù),所以為整數(shù),因此

m﹣1=1,或m﹣1=23,

m=2m=24.

當(dāng)m=2時(shí),n=45,n(m﹣1)=45×1=45(人);

當(dāng)m=24時(shí),n=23,n(m﹣1)=23×(24﹣1)=529(人).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正方形ABCD的邊長(zhǎng)為4,E為BC邊上一點(diǎn),BE=3,M為線段AE上一點(diǎn),射線BM交正方形的一邊于點(diǎn)F,且BF=AE,則BM的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先仔細(xì)閱讀材料,再解決問題:

完全平方式x2±2xy+y2=(x±y2以及(x±y2的值為非負(fù)數(shù)的特點(diǎn)在數(shù)學(xué)學(xué)習(xí)中有廣泛的應(yīng)用,比如探求2x2+12x4的最大(。┲禃r(shí),我們可以配成完全平方式來解決:

解:原式=2x2+6x2)=2x2+6x+992)=2[x+3211]2x+3222

∵無論x取什么數(shù),都有(x+32≥0,∴(x+32的最小值為0;

x=﹣3時(shí),2x+3222的最小值是2×022=﹣22;

∴當(dāng)x=﹣3時(shí),2x2+12x4的最小值是﹣22

請(qǐng)根據(jù)上面的解題思路,解答下列問題:

1)多項(xiàng)式3x26x+12的最小值是多少,并寫出對(duì)應(yīng)的x的值;

2)判斷多項(xiàng)式有最大值還是最小值,請(qǐng)你說明理由并求出當(dāng)x為何值時(shí),此多項(xiàng)式的最大值(或最小值)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一組密碼的一部分.為了保密,許多情況下可采用不同的密碼,請(qǐng)你運(yùn)用所學(xué)知識(shí)找到破譯的鑰匙.目前,已破譯出今年考試的真實(shí)意思是努力發(fā)揮.若所處的位置為(x,y),你找到的密碼鑰匙是   ,破譯正做數(shù)學(xué)的真實(shí)意思是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標(biāo)準(zhǔn)質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量10kg的用負(fù)數(shù)表示,結(jié)果記錄如下

與標(biāo)準(zhǔn)質(zhì)量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋數(shù)()

40

30

10

25

40

20

35

(1)求這批面粉的總質(zhì)量;

(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點(diǎn)P為直線 上的動(dòng)點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線AB與直線CD相交于點(diǎn)OOE平分.

1)如圖①,若,求的度數(shù);

2)如圖②,射線OF內(nèi)部.

①若,判斷OF是否為的平分線,并說明理由;

②若OF平分,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點(diǎn)M旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為M′,當(dāng)AM′+DM取得最小值時(shí),點(diǎn)M的坐標(biāo)為( )

A.(0,
B.(0,
C.(0,
D.(0,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案