【題目】如圖,在△AOB中,∠O=90°,AO=18cm,BO=30cm,動點M從點A開始沿邊AO以1cm/s的速度向終點O移動,動點N從點O開始沿邊OB以2cm/s的速度向終點B移動,一個點到達終點時,另一個點也停止運動.如果M、N兩點分別從A、O兩點同時出發(fā),設運動時間為ts時四邊形ABNM的面積為Scm2.
(1)求S關于t的函數(shù)關系式,并直接寫出t的取值范圍;
(2)判斷S有最大值還是有最小值,用配方法求出這個值.
【答案】(1)S=t2﹣18t+270(0<t≤15);(2)S有最小值,這個值是189
【解析】
(1)根據(jù)題意和三角形的面積公式求出S關于t的函數(shù)關系式;
(2)利用配方法把一般式化為頂點式,根據(jù)二次函數(shù)的性質解答.
(1)由題意得,AM=t,ON=2t,則OM=OA-AM=18-t,
四邊形ABNM的面積S=△AOB的面積-△MON的面積
=×18×30-×(18-t)×2t
=t2-18t+270(0<t≤15);
(2)S=t2-18t+270
=t2-18t+81-81+270
=(t-9)2+189,
∵a=1>0,
∴S有最小值,這個值是189.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,并且AD是⊙O的直徑,C是的中點,AB和DC的延長線交于⊙O外一點E.
求證:(1)∠EBC=∠D;
(2)BC=EC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=20cm,BC=16cm,點D為AB的中點.
(1)如果點P在線段BC上以6cm/s的速度由B點向C點運動,同時點Q在線段CA上由C向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y1=﹣2x2+2,直線y2=2x+2,當x任取一值時,對應的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1.例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.下列判斷:①當x>0時,y1>y2;②當x<0時,x值越大,M值越大;③使得M大于2的x值不存在;④使得M=1的x值是﹣或.其中正確結論的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形紙片ABC中,∠B=2∠C,把三角形紙片沿直線AD折疊,點B落在AC邊上的E處,那么下列等式成立的是( 。
A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經過B點,已知A點坐標是(2,0),B點坐標是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標及D點的坐標;
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最?若C點存在,求出C點的坐標;若C點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A表示一個數(shù),若把數(shù)A寫成形如的形式,其中、、、、…都為整數(shù).則我們稱把數(shù)A寫成連分數(shù)形式.
例如:把2.8寫成連分數(shù)形式的過程如下:
2.8-2=0.8,,
1.25-1=0.25,,
4-4=0.
(1)把3.245寫成連分數(shù)形式不完整的過程如下:
3.245-3=0.245,,
4.082-4=0.082,,
12.250-12=0.25,,
4-4=0.
∴
則_____________;_____________;
(2)請把寫成連分數(shù)形式;
(3)有這樣一個問題:如圖是長為47,寬為10的長方形紙片.從中裁剪出正方形,若長方形紙片無剩余,則剪出的正方形最少是幾個?
小明認為這個問題和 “把一個數(shù)化為連分數(shù)形式” 有關聯(lián),并把化成連分數(shù)從而解決了問題.你可以參考小明的思路解決上述問題,請直接寫出“剪出的正方形最少”時,正方形的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com