【題目】為弘揚(yáng)中華民族傳統(tǒng)文化,某校舉辦了燕城詩文大賽活動(dòng),從中隨機(jī)抽取部分學(xué)生的比賽成績,根據(jù)成績(成績都高于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整):

組別

分?jǐn)?shù)

人數(shù)

1

16

2

3

20

4

5

6

請(qǐng)根據(jù)以上信息,解答下列問題:

1)此次隨機(jī)抽取的學(xué)生數(shù)是 人, ;

2)計(jì)算扇形統(tǒng)計(jì)圖中5所在扇形圓心角的度數(shù);

3)若該校共有1500名學(xué)生,那么成績低于70分的約有多少人?

【答案】180,24,14;(2;(3375

【解析】

1)抽取學(xué)生人數(shù)我們找到一組數(shù)據(jù)以及所占整體的百分率即可求解,之后可依次求出a、b的值;

2)由第5組學(xué)生的人數(shù)為6人,即可求得所占圓心角為;

3)由樣本估計(jì)整體,根據(jù)抽查學(xué)生中低于70分的學(xué)生占80名學(xué)生的比,即可求得答案.

120÷25%=80(人),b=20-6=14(人),a=80-16-20-20=24(人)

2)∵

第五組所在扇形的圓心角為

3)∵

∴成績低于70分的約有375人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六個(gè)數(shù):0.123,3.1416,﹣,(﹣1.53,0.1020020002(相鄰兩個(gè)2之間0的個(gè)數(shù)逐次加1),若其中無理數(shù)的個(gè)數(shù)為x,整數(shù)的個(gè)數(shù)為y,非負(fù)數(shù)的個(gè)數(shù)為z,則x+y+z_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小明在地面D處觀測(cè)旗桿頂端B的仰角為30°,然后他正對(duì)建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測(cè)得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)P是弦AC上一動(dòng)點(diǎn)(不與A,C重合),過點(diǎn)PPEAB,垂足為E,射線EP于點(diǎn)F,交過點(diǎn)C的切線于點(diǎn)D

1)求證:DC=DP;

2)若CAB=30°,當(dāng)F的中點(diǎn)時(shí),判斷以A,O,C,F為頂點(diǎn)的四邊形是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長線與AC的延長線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;

(3)若AB=3,AE=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點(diǎn)O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且∠DBA=BCD.

(1)證明:BD是⊙O的切線.

(2)若點(diǎn)E是劣弧BC上一點(diǎn),AEBC相交于點(diǎn)F,且BEF的面積為16,cosBFA=,那么,你能求出ACF的面積嗎?若能,請(qǐng)你求出其面積;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,最適合采用普查方式的是(

A.了解三明市初中學(xué)生每天閱讀的時(shí)間B.了解三明電視臺(tái)“教育在線”欄目的收視率

C.了解一批節(jié)能燈的使用壽命D.了解某校七年級(jí)班同學(xué)的身高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出此時(shí)方程的根;

(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案