【題目】完成下面的證明.

如圖,已知∠1=2,B=C,可推得ABCD.理由如下:

∵∠1=2(已知)

且∠1=CGD_______

∴∠2=CGD(等量代換)

CEBF_______

∴∠_____=BFD_______

又∵∠B=C(已知)

∴∠BFD=B_______

ABCD_______

【答案】 對頂角相等 同位角相等,兩直線平行 C 兩直線平行,同位角相等 等量代換 內(nèi)錯角相等,兩直線平行

【解析】分析:根據(jù)平行線的性質(zhì)和判定及對頂角相等填空.

詳解:如圖,已知∠1=∠2,∠B=∠C,可推得ABCD.理由如下:

∵∠1=∠2(已知),

且∠1=∠CGD(對頂角相等)

∴∠2=∠CGD(等量代換)

CEBF(同位角相等,兩直線平行)

∴∠C=∠BFD(兩直線平行,同位角相等)

又∵∠B=∠C(已知)

∴∠BFD=∠B(等量代換)

ABCD(內(nèi)錯角相等,兩直線平行)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,三角板的直角頂點P的坐標為(22),一條直角邊與x軸的正半軸交于點A,另一直角邊與y軸交于點B,三角板繞點P在坐標平面內(nèi)轉(zhuǎn)動的過程中,當△POA為等腰三角形時,請寫出所有滿足條件的點B的坐標__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B6,0)的直線AB與直線OA相交于點A4,2),動點M在線段OA和射線AC上運動.

1)求直線AB的解析式.

2)求OAC的面積.

3)是否存在點M,使OMC的面積是OAC的面積的?若存在求出此時點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩條直線相交所成的四個角分別滿足下列條件之一,其中不能判定這兩條直線垂直的條件是(

A.兩對對頂角分別相等B.有一對對頂角互補

C.有一對鄰補角相等D.有三個角相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,∠AOB=90°,點C在射線OA上,CD∥OE.
(1)如圖1,若∠OCD=120°,求∠BOE的度數(shù);
(2)把“∠AOB=90°”改為“∠AOB=120°”,射線OE沿射線OB平移,得O′E,其他條件不變,(如圖2所示),探究∠OCD、∠BO′E的數(shù)量關(guān)系;
(3)在(2)的條件下,作PO′⊥OB垂足為O′,與∠OCD的平分線CP交于點P,若∠BO′E=α,請用含α的式子表示∠CPO′(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC與三角形A'B'C'在平面直角坐標系中的位置如圖:

1)分別寫出下列各點的坐標:A'_____; B'_____;C'_____;

2)三角形A'B'C'由三角形ABC經(jīng)過怎樣的平移得到?___________

3)若點Pa,b)是三角形ABC內(nèi)部一點,則平移后三角形A'B'C'內(nèi)的對應(yīng)點P'的坐標為_________;

4)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一堆有紅、白兩種顏色的球若干個,已知白球的個數(shù)比紅球少,但白球的2倍比紅球多.若把每一個白球都記作“2”,每一個紅球都記作“3”,則總數(shù)為“60”,那么這兩種球各有多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)不等式的基本性質(zhì),把下列不等式化成“xa”“xa”的形式:

14x3x+5 2)-2x<17

30.3x<-0.9 4xx4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P(﹣1,2),則點P所在的象限為(  )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習冊答案