【題目】要設(shè)計(jì)一幅寬20cm,長(zhǎng)30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2∶3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應(yīng)如何設(shè)計(jì)每個(gè)彩條的寬度?

【答案】每個(gè)橫、豎彩條的寬度分別為cm、cm.

【解析】試題分析:設(shè)每個(gè)橫彩條的寬為2xcm,則每個(gè)豎彩條的寬為3xcm求出剩余部分的面積,根據(jù)剩余部分的面積是原圖案面積的列方程求解即可.

試題解析:

:設(shè)每個(gè)橫彩條的寬為2xcm,則每個(gè)豎彩條的寬為3xcm

∴剩余部分的寬為:(206x)cm,剩余部分的長(zhǎng)為:(304x)cm

∴剩余部分矩形的面積為(206x)(304x)24x2260x600cm2.

根據(jù)題意,得24x2260x600(1)×20×30.

整理,得6x265x500.

解方程,得x1,x210

x210不合題意,舍去.

x.

2x3x

答:每個(gè)橫、豎彩條的寬度分別為cm、cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN,BE⊥MN,垂足分別為點(diǎn)D,E.求證:DE=AD+BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A,BCx軸的正半軸上從左向右依次排列的三點(diǎn),過(guò)點(diǎn)A,B,C分別作與軸平行的直線,,

1)如圖1,若直線與直線,分別交于點(diǎn)DE,F三點(diǎn),設(shè)D),E),F,

①若,,,則 (填“=”“>”“<”);

②若, ),求證:AB=BC

2)如圖2,點(diǎn)A,BC的橫坐標(biāo)分別為,n,),直線,與反比例函數(shù))的圖像分別交于點(diǎn)D,E,F,根據(jù)以上探究的經(jīng)驗(yàn),探索

之間的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張翔上午7:30出發(fā),從學(xué)校騎自行車(chē)去縣城,路程全長(zhǎng)20km,中途因道路施工步行一段路.他步行的平均速度是5km/h

(1)若張翔騎車(chē)的平均速度是15km/h,當(dāng)天上午9:00到達(dá)縣城,則他騎車(chē)與步行各用多少時(shí)間?

(2)若張翔必須在當(dāng)天上午9:00之前趕到縣城,他的步行平均速度不變,則他騎車(chē)的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將沿翻折,點(diǎn)的對(duì)稱(chēng)點(diǎn)是點(diǎn),,

1)求證:四邊形是菱形;

2)如圖2,在上取一點(diǎn),連接并延長(zhǎng)至點(diǎn),在上取一點(diǎn),連接,若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑為1的圓從原點(diǎn)出發(fā)沿x軸正方向滾動(dòng)一周,圓上一點(diǎn)由原點(diǎn)O到達(dá)點(diǎn)O′,圓心也從點(diǎn)A到達(dá)點(diǎn)A′.

1)點(diǎn)O′的坐標(biāo)為  ,點(diǎn)A′的坐標(biāo)為  ;

2)若點(diǎn)P是圓在滾動(dòng)過(guò)程中圓心經(jīng)過(guò)的某一位置,求以點(diǎn)P,點(diǎn)O,點(diǎn)O′為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),并按照成績(jī)從低到高分成A,B,C,D,E五個(gè)小組,繪制統(tǒng)計(jì)圖如下(未完成),解答下列問(wèn)題:

1)樣本容量為  ,頻數(shù)分布直方圖中a  

2)扇形統(tǒng)計(jì)圖中D小組所對(duì)應(yīng)的扇形圓心角為n°,求n的值并補(bǔ)全頻數(shù)分布直方圖;

3)若成績(jī)?cè)?/span>80分以上(不含80分)為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠BAC=90°,AB=ACA3,0),B0,1

1)將△ABC沿x軸的正方向平移t個(gè)單位,B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′C′正好落在反比例函數(shù)y=的圖象上.請(qǐng)直接寫(xiě)出C點(diǎn)的坐標(biāo)和t,k的值;

2)有一個(gè)Rt△DEF∠D=90°,∠E=60°,DE=2,將它放在直角坐標(biāo)系中,使斜邊EFx軸上,直角頂點(diǎn)D在(1)中的反比例函數(shù)圖象上,求點(diǎn)F的坐標(biāo);

3)在(1)的條件下,問(wèn)是否存在x軸上的點(diǎn)M和反比例函數(shù)y=圖象上的點(diǎn)N,使得以B′、C′M、N為頂點(diǎn)的四邊形構(gòu)成平行四邊形?如果存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M和點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:我們把稱(chēng)為二階行列式,規(guī)定它的運(yùn)算法則為adbc,例如:2×53×4=﹣2

1)填空:若0,則x   ,0,則x的取值范圍   ;

2)若對(duì)于正整數(shù)m,n滿(mǎn)足,13,求m+n的值;

3)若對(duì)于兩個(gè)非負(fù)數(shù)xy,k1,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案