【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b'),給出如下定義:
若b'=,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(3,﹣2)的限變點(diǎn)的坐標(biāo)是(3,﹣2),點(diǎn)(﹣1,5)的限變點(diǎn)的坐標(biāo)是(﹣1,﹣5).
(1)①點(diǎn)(﹣,1)的限變點(diǎn)的坐標(biāo)是 ;
②在點(diǎn)A(﹣1,2),B(﹣2,﹣1)中有一個(gè)點(diǎn)是函數(shù)y=圖象上某一個(gè)點(diǎn)的限交點(diǎn),這個(gè)點(diǎn)是 ;
(2)若點(diǎn)P在函數(shù)y=﹣x+3的圖象上,當(dāng)﹣2≤x≤6時(shí),求其限變點(diǎn)Q的縱坐標(biāo)b'的取值范圍;
(3)若點(diǎn)P在關(guān)于x的二次函數(shù)y=x2﹣2tx+t2+t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b'的取值范圍是b'≥m或b'<n,其中m>n.令s=m﹣n,求s關(guān)于t的函數(shù)解析式及s的取值范圍.
【答案】(1)①(﹣,﹣1);②A;(2)當(dāng)﹣2≤x≤6時(shí),﹣5≤b′≤2;(3)s關(guān)于t的函數(shù)解析式為s=t2+1(t≥1),s的取值范圍是s≥2.
【解析】
(1)①直接根據(jù)限變點(diǎn)的定義直接得出答案;
②點(diǎn)(-1,-2)在反比例函數(shù)圖象上,點(diǎn)(-1,-2)的限變點(diǎn)為(-1,2),據(jù)此得到答案;
(2)根據(jù)題意可知y=-x+3(x≥-2)圖象上的點(diǎn)P的限變點(diǎn)Q必在函數(shù)y=的圖象上,結(jié)合圖象即可得到答案;
(3)首先求出y=x2-2tx+t2+t頂點(diǎn)坐標(biāo),結(jié)合t與1的關(guān)系確定y的最值,進(jìn)而用m和n表示出s,根據(jù)t的取值范圍求出s的取值范圍.
(1)①根據(jù)限變點(diǎn)的定義可知點(diǎn)點(diǎn)(﹣,1)的限變點(diǎn)的坐標(biāo)為(﹣,﹣1);
②(﹣1,﹣2)限變點(diǎn)為(﹣1,2),即這個(gè)點(diǎn)是點(diǎn)A.
(2)依題意,y=﹣x+3(x≥﹣2)圖象上的點(diǎn)P的限變點(diǎn)Q必在函數(shù)y=的圖象上.
當(dāng)x=﹣2時(shí),y=﹣2﹣3=﹣5,
當(dāng)x=1時(shí),y=﹣1+3=2,
當(dāng)x=6時(shí),y=﹣6+3=﹣3,
∴當(dāng)﹣2≤x≤6時(shí),﹣5≤b′≤2;
(3)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,
∴頂點(diǎn)坐標(biāo)為(t,t).
若t<1,b′的取值范圍是b′≥m或b′<n,與題意不符.
若t≥1,當(dāng)x≥1時(shí),y的最小值為t,即m=t;
當(dāng)x<1時(shí),y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].
∴s=m﹣n=t+(1﹣t)2+t=t2+1.
∴s關(guān)于t的函數(shù)解析式為s=t2+1(t≥1),
當(dāng)t=1時(shí),s取最小值2,
∴s的取值范圍是s≥2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),,把拋物線在軸及其上方的部分記作,將向右平移得,與軸交于點(diǎn),,若直線與,共有個(gè)不同的交點(diǎn),則的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球.
(1)用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求兩次摸到的球的顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2,B3…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長(zhǎng)記a1,第2個(gè)等邊三角形的邊長(zhǎng)記為a2,以此類推,若OA1=3,則a2=_______,a2019=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,4),B(4,2),在x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,則點(diǎn)P的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點(diǎn)B處看見一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球.如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo)和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個(gè)單位后,問點(diǎn)B是否落在雙曲線上?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com