精英家教網 > 初中數學 > 題目詳情
銳角為45°的直角三角形的兩直角邊長也相等,這樣的三角形稱為等腰直角三角形.我們常用的三角板中有一塊就是這樣的三角形,也可稱它為等腰直角三角板.把兩塊全等的等腰直角三角板按如圖1放置,其中邊BC、FP均在直線l上,邊EF與邊AC重合.
(1)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連接AP,BQ.猜想并寫出BQ與AP所滿足的數量關系和位置關系,請證明你的猜想;
(2)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ.你認為(1)中所猜想的BQ與AP的數量關系和位置關系還成立嗎?若成立,給出證明;若不成立,請說明理由.
精英家教網
分析:(1)延長BQ交AP于點M,根據等腰直角三角板的每一個銳角都是45°可得∠EPF=45°,然后求出∠CQP=45°,根據等角對等邊的性質求出CQ=CP,然后利用邊角邊定理證明△BCQ與△ACP全等,再根據全等三角形對應邊相等,即可證明BQ=AP,對應角相等可得∠CBQ=∠CAP,又∠CBQ+∠BQC=90°,所以∠CAP+∠AQM=90°,從而得到BQ⊥AP;
(2)延長QB交AP于點M,根據等腰直角三角板的每一個銳角都是45°可得∠EPF=45°,根據對頂角相等得到∠CPQ=45°,然后求出∠CQP=45°,根據等角對等邊的性質求出CQ=CP,然后利用邊角邊定理證明△BCQ與△ACP全等,再根據全等三角形對應邊相等,即可證明BQ=AP,對應角相等可得∠BQC=∠APC,又∠CBQ+∠BQC=90°,所以∠PBM+∠APC=90°,從而得到BQ⊥AP.
解答:(1)BQ=AP,BQ⊥AP.
證明:延長BQ交AP于點M,
∵△ABC和△EFP都是等腰直角三角板,
∴BC=AC,AC⊥BC,∠EPF=45°,
∴∠BCQ=∠ACP=90°,∠CQP=∠EPF=45°,
∴CQ=CP,
在△BCQ和△ACP中,
BC=AC
∠BCQ=∠ACP
CQ=CP
,
∴△BCQ≌△ACP(SAS),
∴BQ=AP,∠CBQ=∠CAP,
∵∠BCQ=90°,
∴∠CBQ+∠BQC=90°,
∵∠BQC=∠AQM(對頂角相等),
∴∠CAP+∠AQM=90°,
∴∠AMB=90°,
∴BQ⊥AP;
精英家教網

(2)關系仍然成立:BQ=AP,BQ⊥AP.
證明:延長QB交AP于點M,
∵△ABC和△EFP都是等腰直角三角板,
∴BC=AC,AC⊥BC,∠EPF=45°,
∴∠BCQ=∠ACP=90°,
∵∠CQP=∠EPF=45°,
∴∠CPQ=∠CQP=45°,
∴CQ=CP,
在△BCQ和△ACP中,
BC=AC
∠BCQ=∠ACP
CQ=CP

∴△BCQ≌△ACP(SAS),
∴BQ=AP,∠BQC=∠APC,
∵∠BCQ=90°,
∴∠CBQ+∠BQC=90°,
∵∠PBM=∠QBC(對頂角相等),
∴∠PBM+∠APC=90°,
∴∠PMB=90°,
∴BQ⊥AP.
點評:本題考查了等腰直角三角形的兩直角邊相等,每一個銳角都是45°的性質,全等三角形的判定與性質,題目不比較復雜但思路比較清晰,此類題目一般都是下一問繼續(xù)沿用第一問的證明思路進行求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(1)“三等分角”是數學史上一個著名問題,但數學家已經證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)
精英家教網
(2)數學家帕普斯借助函數給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設P(a,
1
a
)、R(b,
1
b
),求直線OM對應的函數關系式(用含a、b的代數式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=
1
3
∠AOB.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC的三個內角,∠A、∠B、∠C滿足關系式∠B+∠C=
1
2
∠A,則此三角形( 。
A、一定是直角三角形
B、-定有一個內角為45°
C、一定是鈍角三角形
D、一定是銳角三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉,在旋轉過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉到CM的位置時,它的斜邊恰好旋轉到CN的位置,請在網格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數量關系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省無錫市江南中學中考數學二模試卷(解析版) 題型:解答題

(1)“三等分角”是數學史上一個著名問題,但數學家已經證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)

(2)數學家帕普斯借助函數給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
①設P(a,)、R(b,),求直線OM對應的函數關系式(用含a、b的代數式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=∠AOB.

查看答案和解析>>

科目:初中數學 來源:2011年江蘇省無錫市育才中學中考數學二模試卷(解析版) 題型:解答題

(1)“三等分角”是數學史上一個著名問題,但數學家已經證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以OC為一邊向∠AOB內部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當添加文字的說明)

(2)數學家帕普斯借助函數給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標系中,邊OB在x軸上、邊OA與函數y=的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
①設P(a,)、R(b,),求直線OM對應的函數關系式(用含a、b的代數式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據此證明∠MOB=∠AOB.

查看答案和解析>>

同步練習冊答案