【題目】在△ABC中,∠A=90°,點D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點F.
探究:當(dāng)AB=AC且C,D兩點重合時(如圖1)探究:
(1)線段BE與FD之間的數(shù)量關(guān)系,直接寫出結(jié)果 ;
(2)∠EBF= .
證明:當(dāng)AB=AC且C,D不重合時,探究線段BE與FD的數(shù)量關(guān)系,并加以證明.
計算:當(dāng)AB=AC時,如圖,求的值 (用含的式子表示).
【答案】(1)BE=FD;(2)22.5°,證明:BE=FD,見解析;計算:
【解析】
探究:(1)首先延長CA與BE交于點G,根據(jù)∠EDB=∠C,BE⊥DE,判斷出BE=EG=BG;然后根據(jù)全等三角形的判定方法,判斷出△ABG≌△ACF,即可判斷出BG=CF=FD,再根據(jù)BE=BG,可得BE=FD,據(jù)此判斷即可;
(2)根據(jù)(1)的結(jié)論易求得答案;
證明:過點D作DG∥CA,與BE的延長線相交于點G,與AB相交于點H,仿照(1)的方法判斷出△DEB≌△DEG和△GBH≌△FDH,即可推出結(jié)論;
計算:利用(2)的結(jié)論證得△GBH∽△FDH和△BHD∽△BAC,利用對應(yīng)邊成比例即可求得結(jié)論.
探究:(1)如圖①,延長CA與BE交于點G,
∵∠EDB=∠C,
∴∠EDB =∠EDG,
即CE是∠BCG的平分線,
又∵BE⊥DE,
∴BE=EG=BG,
∵∠BED=∠BAD=90°,∠BFE=∠CFA,
∴∠EBF=∠ACF,
即∠ABG=∠ACF,
在△ABG和△ACF中,
,
∴△ABG≌△ACF,
∴BG=CF=FD,
又∵BE=BG,
∴BE=FD;
(2)∵AB=AC,∠A=90°,
∴∠ACB=45,
由(1)得CE是∠BCG的平分線,且∠EBF=∠ACF,
∴∠EBF=∠ACB=;
證明:結(jié)論BE=FD.
證明如下:
如圖②,過點D作DG∥CA,與BE的延長線相交于點G,與AB相交于點H,
則∠GDB=∠C,∠BHD=∠A=90°=∠GHB.
∵∠EDB=∠C=∠GDB=∠EDG,
在△DEB和△DEG中,
,
∴△DEB≌△DEG,
∴BE=GE=GB.
∵∠A=90°,AB=AC,
∴∠ABC=∠C=∠GDB,
∴HB=HD.
∵∠BED=∠BHD=90°, ∠BFE=∠DFH,
∴∠EBF=∠HDF,
在△GBH和△FDH中,
,
∴△GBH≌△FDH,
∴GB=FD,
∴BE=FD;
計算:∵△DEB≌△DEG,BE=GB,∠BHD=∠BEF=90°,∠EBF=∠HDF,
∴△GBH∽△FDH,
∴,即.
又∵DG∥CA,
∴△BHD∽△BAC,
∴,即.
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點坐標(biāo).
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當(dāng)k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當(dāng)△PMN面積最大時,求P點坐標(biāo),并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時x的取值范圍;
②直接寫出直線l與圖象L2有四個交點時k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過三點,且.
(1)求的值;
(2)在拋物線上求一點使得四邊形是以為對角線的菱形;
(3)在拋物線上是否存在一點,使得四邊形是以為對角線的菱形?若存在,求出點的坐標(biāo),并判斷這個菱形是否為正方形?若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學(xué)生參加球類活動的情況進(jìn)行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)a= ,b= ;
(2)該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約 人;
(3)該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小劉同學(xué)在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點O距離地面的高度OO′=2米.當(dāng)?shù)醣垌敹擞?/span>A點抬升至 A′點(吊臂長度不變)時,地面B處的重物(大小忽略不計)被吊至B′處,緊繃著的吊繩A′B′=AB.AB垂直地面 O′B于點B,A′B′垂直地面O′B于點C,吊臂長度OA′=OA=10米,且cosA,sinA′.求此重物在水平方向移動的距離BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于點D,點O為AB上一點,以O為圓心,AO為半徑的圓經(jīng)過點D.
(1)求證:BC與⊙O相切;
(2)若BD=AD=,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校根據(jù)課程設(shè)置要求,開設(shè)了數(shù)學(xué)類拓展性課程,為了解學(xué)生最喜歡的課程內(nèi)容,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查(每人必須且只選中其中一項),并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:
(1)求m,n的值.
(2)補(bǔ)全條形統(tǒng)計圖.
(3)該校共有1200名學(xué)生,試估計全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年新冠肺炎疫情發(fā)生以來,每天測體溫成為一種制度,手持紅外測溫槍成為緊俏商品.某經(jīng)銷店承諾對所有商品明碼標(biāo)價,絕不哄抬物價.如下表所示是該店甲、乙兩種手持紅外測溫槍的進(jìn)價和售價:
商品 價格 | 甲 | 乙 |
進(jìn)件(元個) | ||
售價(元個) |
該店有一批用元購進(jìn)的甲、乙兩種手持紅外測溫槍庫存,預(yù)計全部銷售后可獲毛利潤共元.[毛利潤(售價進(jìn)價)銷售量]
(1)該店庫存的甲、乙兩種手持紅外測溫槍分別為多少個?
(2)根據(jù)銷售情況,該店計劃增加甲種手持紅外測溫槍的購進(jìn)量,減少乙種手持紅外測溫槍的購進(jìn)量.已知甲種手持紅外測溫槍增加的數(shù)量是乙種手持紅外測溫槍減少的數(shù)量的倍,進(jìn)貨價不變,而且用于購進(jìn)這兩種手持紅外測溫槍的總資金不超過元,則該店怎樣進(jìn)貨,可使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與點B,C重合),過點C作CN⊥DM交AB于點N,連結(jié)OM、ON,MN.下列五個結(jié)論:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,則S△OMN的最小值是1;⑤AN2+CM2=MN2.其中正確結(jié)論是_____;(只填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com