分析 (1)由BD為∠ABC的平分線,得到∠ABC=2∠DBC,等量代換得到∠ABC=∠C,證得AB=AC,即可得到結(jié)論;
(2)如圖2,截取BE=AB,連接DE,推出△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)得到∠A=∠DEB,AD=ED,由∠A=2∠C,得到∠DEB=2∠C,求出∠C=∠EDB,得到ED=EC即可得到結(jié)論;
(3)過B作BF平分∠DBC交AC于F,根據(jù)角平分線的性質(zhì)得到BD平分∠ABC,∠ABC=2∠ABD=2∠CBD,由∠ABC=2∠ACB,得到∠ACB=∠ABD=∠CBD,由角平分線的定義得到∠1=∠3=$\frac{1}{2}$∠DBC,∠4=∠2=$\frac{1}{2}$∠ACB,推出△OBC≌△FCB,根據(jù)全等三角形的性質(zhì)得到OC=BF,由AB=OC,得到BF=AB等量代換得到∠ABF=∠AFB,求得AB=AF,即可得到結(jié)論.
解答 解:(1)∵BD為∠ABC的平分線,
∴∠ABC=2∠DBC
∵∠C=2∠DBC,
∴∠ABC=∠C,
∴AB=AC,
∵∠A=60°,
∴△ABC是等邊三角形;
(2)如圖2,截取BE=AB,連接DE,
在△ABD與△EBD中,$\left\{\begin{array}{l}{AB=BE}\\{∠ABD=∠EBD}\\{BD=BD}\end{array}\right.$,
∴△ABD≌△EBD,
∴∠A=∠DEB,AD=ED,
∵∠A=2∠C,
∴∠DEB=2∠C,
∵∠DEB=∠C=∠EDB,
∴∠C+∠EDB=2∠C,
∴∠C=∠EDB,
∴ED=EC,
∵AB=4.8,
∴CE=BC-BE=3.2,
∴AD=DE=CE=3.2;
(3)如圖3,過B作BF平分∠DBC交AC于F,
∵BD平分∠ABC,
∴∠ABD=∠CBD=$\frac{1}{2}$∠ABC,
即∠ABC=2∠ABD=2∠CBD,
∵∠ABC=2∠ACB,
∴∠ACB=∠ABD=∠CBD,
∵OC平分∠ACB,BF平分∠DBC,
∴∠1=∠3=$\frac{1}{2}$∠DBC,∠4=∠2=$\frac{1}{2}$∠ACB,
∴∠1=∠2=∠3=∠4,
在△OBC與△FCB中,$\left\{\begin{array}{l}{∠DBC=∠ACB}\\{BC=CB}\\{∠2=∠1}\end{array}\right.$,
∴△OBC≌△FCB,
∴OC=BF,
∵AB=OC,
∴BF=AB,
∵∠ABF=∠ABD+∠3,∠AFB=∠ACB+∠1,
∵∠ABD=∠ACB,∠1=∠3,
∴∠ABF=∠AFB,
∴AB=AF,
∴AB=BF=AF,
∴△ABF為等邊三角形,
∴∠A=60°.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),等邊三角形的判定還想著,角平分線的定義,三角形的外角的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①②④ | D. | ①②③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AB=CD | B. | AC=BD | C. | AD=CB | D. | AO=OC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com