【題目】如圖,在△ABC中,ABAC,點(diǎn)Ay軸上,點(diǎn)Cx軸上,BCx軸,tanACO.延長AC到點(diǎn)D,過點(diǎn)DDEx軸于點(diǎn)G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經(jīng)過點(diǎn)B,和CE交于點(diǎn)F,且CFFE21.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____

【答案】,﹣3).

【解析】

根據(jù)AB=ACtanACO=,設(shè)未知數(shù)表示點(diǎn)A、B、C的坐標(biāo),根據(jù)線段中垂線的性質(zhì)得CE=CD,進(jìn)而得到∠ECG=DCG=ACO,再根據(jù)tanECG=tanACO=,再設(shè)未知數(shù)表示出點(diǎn)E的坐標(biāo),進(jìn)而求出CE的中點(diǎn)F的坐標(biāo),把點(diǎn)BF的坐標(biāo)代入反比例函數(shù)的關(guān)系式,進(jìn)而得出兩個(gè)未知數(shù)之間的關(guān)系,再根據(jù)=6,列方程求出未知數(shù),進(jìn)而確定點(diǎn)的坐標(biāo).

解:過點(diǎn)AAMBC,垂足為M

AB=AC,

BM=CM

tanACO==

∴設(shè)OA=2m,OC=3m,則BC=4m,因此點(diǎn)C(3m,0)、B(3m,4m),

DEx軸于點(diǎn)G,且DG=GE,

CE=CD,

∴∠ECG=∠DCG=∠ACO

tanECG==tanACO=,

設(shè)EG=2n,則CG=3n,因此點(diǎn)E(3m+3n,2n),

又∵CFFE=21.即點(diǎn)FCE的三等分點(diǎn),

∴點(diǎn)F(3m+2n,n),

B(3m4m)和F(3m+2n,n)代入反比例函數(shù)y=得,

k=3m4m=(3m+2n)n,即(3m2n)(3m+n)=0,

m0,n0

n=m,

∴點(diǎn)E的坐標(biāo)為(m,3m),

SABE=6=S梯形ABCO+S梯形BCGES梯形AOGE,

(2m+4m3m+(4m+3mm(2m+3mm=6,

解得:m=1

E(,3),

D(,﹣3)

故答案為:(,﹣3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).

三等分任意角問題是數(shù)學(xué)史上一個(gè)著名的問題,直到1837年,數(shù)學(xué)家才證明了三等分任意角是不能用尺規(guī)完成的.

在探索中,出現(xiàn)了不同的解決問題的方法

方法一:

如圖(1),四邊形ABCD是矩形,FDA延長線上一點(diǎn),GCF上一點(diǎn),CFAB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECBACB

方法二:

數(shù)學(xué)家帕普斯借助函數(shù)給出一種三等分銳角的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OBx軸上,邊OA與函數(shù)y的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長為半徑作弧交圖象于點(diǎn)R.過點(diǎn)Px軸的平行線,過點(diǎn)Ry軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過點(diǎn)PPHx軸于點(diǎn)H,過點(diǎn)RRQPH于點(diǎn)Q,則∠MOBAOB

1)在方法一中,若∠ACF40°,GF4,求BC的長.

2)完成方法二的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)以每秒2個(gè)單位的速度沿向終點(diǎn)運(yùn)動(dòng),過點(diǎn)的垂線交折線于點(diǎn),當(dāng)點(diǎn)不和的頂點(diǎn)重合時(shí),以為邊作等邊三角形,使點(diǎn)和點(diǎn)在直線的同側(cè),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).

1)求等邊三角形的邊長(用含的代數(shù)式表示);

2)當(dāng)點(diǎn)落在的邊上時(shí),求的值;

3)設(shè)重合部分圖形的面積為,求的函數(shù)關(guān)系式;

4)作直線,設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)分別為,直接寫出時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家出門去遛狗(哈士奇,又名“撤手沒”),當(dāng)走到200米時(shí)狗繩突然斷裂,脫了韁的哈士奇飛速跑開,小明也快速追狗,已知狗速是人速的2倍,4分鐘時(shí)哈土奇聽到小明的呼喊聲,調(diào)頭跑向小明,很快人狗相遇,但是哈士奇并沒有停留的意思,繼續(xù)跑向家中,小明調(diào)頭繼續(xù)追趕.脫韁之后狗和人的速度都不變.遛狗路程s(米)與時(shí)間t(分鐘)之間的函數(shù)圖象如圖所示,下列說法:a500;Y點(diǎn)縱坐標(biāo)為580;b2;c7d9;其中正確的個(gè)數(shù)是( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)EAD邊上,點(diǎn)FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB8,點(diǎn)H是直線AB邊上的一個(gè)點(diǎn),連接DH交直線CB的干點(diǎn)E,交直線AC于點(diǎn)F,連接BF

1)如圖,點(diǎn)HAB邊上,若四邊形ABCD是正方形,求證:△ADF≌△ABF;

2)在(1)的條件下,若△BHF為等腰三角形,求HF的長;

3)如圖,若tanADH,是否存在點(diǎn)H,使得△BHF為等腰三角形?若存在,求該三角形的腰長;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時(shí)如下結(jié)論:①這個(gè)函數(shù)圖象的頂點(diǎn)始終在直線y=-x+1上;②存在一個(gè)m的值,使得函數(shù)圖象的頂點(diǎn)與軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形;③點(diǎn)A(x1,y1)與點(diǎn)B(x2,y2)在函數(shù)圖象上,若x1<x2x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時(shí),yx的增大而增大,則m的取值范圍為m≥2其中錯(cuò)誤結(jié)論的序號(hào)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連接正八邊形的三個(gè)頂點(diǎn),得到如圖所示的圖形,下列說法錯(cuò)誤的是( )

A. 是等邊三角形

B. 連接,則分別平分

C. 整個(gè)圖形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形

D. 四邊形與四邊形的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)火車站進(jìn)行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動(dòng)打印車票的無人售票窗口.某日,從早8點(diǎn)開始到上午11點(diǎn),每個(gè)普通售票窗口售出的車票數(shù)y1(張)與售票時(shí)間x(小時(shí))的正比例函數(shù)關(guān)系滿足圖中的圖象,每個(gè)無人售票窗口售出的車票數(shù)y2(張)與售票時(shí)間x(小時(shí))的函數(shù)關(guān)系滿足圖中的圖象.

1)圖中圖象的前半段(含端點(diǎn))是以原點(diǎn)為頂點(diǎn)的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為   ,其中自變量x的取值范圍是   ;

2)若當(dāng)天共開放5個(gè)無人售票窗口,截至上午9點(diǎn),兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個(gè)普通售票窗口?

3)上午10點(diǎn)時(shí),每個(gè)普通售票窗口與每個(gè)無人售票窗口售出的車票數(shù)恰好相同,試確定圖中圖象的后半段一次函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案