【題目】在一條筆直的公路上順次有A、B、C三地,甲車從B地出發(fā)往A地勻速行駛,到達(dá)A地后停止.在甲車出發(fā)的同時(shí),乙車也從B地出發(fā)往A地勻速行駛,到達(dá)A地停留1小時(shí)后,調(diào)頭按原速向C地行駛.若AB兩地相距300千米,在兩車行駛的過程中,甲、乙兩車之間的距離y(千米)與乙車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,則在兩車出發(fā)后經(jīng)過_____小時(shí)相遇.
【答案】
【解析】
觀察函數(shù)圖像可知A、C兩地的間距,由速度=路程÷時(shí)間可求出乙車的速度,結(jié)合甲、乙兩車速度間的關(guān)系可求出甲車的速度,再求出乙車從A地返回時(shí)兩車的間距,依據(jù)相遇時(shí)間=4+兩車的間距÷兩車的速度和,即求出甲、乙兩車相遇的時(shí)間.
解:最總兩車相距400km,
A、C兩地相距400km,
乙車的速度為(300+400)÷(8-1)=100km/h,
甲車的速度為100-120÷3=60 km/h,
乙車從A地返回時(shí),兩車的間距為300-60×4=60km,
∴兩車相遇的時(shí)間為4+60÷(100+60)=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,建立如圖所示的平面直角坐標(biāo)系:
(1)求拱橋所在拋物線的解析式;
(2)當(dāng)水面下降1m時(shí),則水面的寬度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)規(guī)定,我市將垃圾分為了四類:可回收物、易腐垃圾、有害垃圾和其他垃圾四大類. 現(xiàn)有投放這四類垃圾的垃圾桶各1個(gè),若將用不透明垃圾袋分類打包好的兩袋不同垃圾隨機(jī)投進(jìn)兩個(gè)不同的垃圾桶,投放正確的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過A(4,0),B(0,﹣4),C(2,﹣4)三點(diǎn).
(1)求這個(gè)函數(shù)的解析式;
(2)求函數(shù)圖頂點(diǎn)的坐標(biāo);
(3)求拋物線與坐標(biāo)軸的交點(diǎn)圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+C的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(-4,0).
(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),請直接寫出此時(shí)S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以墻(長度不限)為一邊,再用長為13m的鐵絲為另外三邊,圍成面積為20的長方形.已知長大于寬,則長方形的長、寬分別是( )
A. 5m,4m或9m,2 m B. 9m,2m C. 10m,1.5m D. 8m,2.5m或5m,4m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若原方程的兩個(gè)實(shí)數(shù)根為x1、x2, 且滿足x12+x22=|x1|+|x2|+2x1x2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某種材料溫度y(℃)隨時(shí)間x(min)變化的函數(shù)圖象.已知該材料初始溫度為15℃,溫度上升階段y與時(shí)間x成一次函數(shù)關(guān)系,且在第5分鐘溫度達(dá)到最大值60℃后開始下降;溫度下降階段,溫度y與時(shí)間x成反比例關(guān)系.
(1)分別求該材料溫度上升和下降階段,y與x間的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度高于30℃時(shí),可以進(jìn)行產(chǎn)品加工,問可加工多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差的絕對值最大時(shí),點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com