【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點P從點A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運動,設運動時間為t秒(t>0).
(1)若點P在AC上,且滿足PA=PB時,求出此時t的值;
(2)若點P恰好在∠BAC的角平分線上,求t的值.
【答案】(1)t=;(2)t=;
【解析】
(1)設存在點P,使得PA=PB,此時PA=PB=2t,PC=4-2t,根據勾股定理列方程即可得到結論;
(2)當點P在∠CAB的平分線上時,如圖,過點P作PE⊥AB于點E,此時BP=7-2t,PE=PC=2t-4,BE=5-4=1,根據勾股定理列方程即可得到結論.
(1)設存在點P,使得PA=PB,此時PA=PB=2t,
在Rt△ABC中,AC===4,PC=4–2t,
在Rt△PCB中,PC2+CB2=PB2,即:(4–2t)2+32=(2t)2,
解得t=,
∴當t=時,PA=PB;
(2)當點P在∠BAC的平分線上時,如圖,過點P作PE⊥AB于點E,
此時BP=7–2t,PE=PC=2t–4,BE=5–4=1,
在Rt△BEP中,PE2+BE2=BP2,
即:(2t–4)2+12=(7–2t)2,解得t=,
∴當t=時,P在∠BAC的平分線上.
科目:初中數學 來源: 題型:
【題目】如圖,△ABD和△BCD都是等邊三角形紙片,AB=2,將△ABD紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.
(1)求證:△FBE是直角三角形;
(2)求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點在數軸上表示的數滿足,且多項式是五次四項式.
(1)的值為____ ____,的值為___ ____,的值為____ ____;
(2)已知點、點是數軸上的兩個動點,點從點出發(fā),以個單位/秒的速度向右運動,同時點從點出發(fā),以個單位/秒的速度向左運動:
① 若點和點經過秒后在數軸上的點處相遇,求出的值和點所表示的數;
② 若點運動到點處,動點再出發(fā),則運動幾秒后這兩點之間的距離為5個單位?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA= .特別地,當點D、E重合時,規(guī)定:λA=0.另外,對λB、λC作類似的規(guī)定.
(1)如圖2,在△ABC中,∠C=90°,∠A=30°,求λA、λC;
(2)在每個小正方形邊長均為1的4×4的方格紙上,畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且λA=2,面積也為2;
(3)判斷下列三個命題的真假(真命題打“√”,假命題打“×”):
①若△ABC中λA<1,則△ABC為銳角三角形;
②若△ABC中λA=1,則△ABC為直角三角形;
③若△ABC中λA>1,則△ABC為鈍角三角形. .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國是一個嚴重缺水的國家.為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過6噸時,水價為每噸2元,超過6噸時,超過的部分按每噸3元收費.該市某戶居民5月份用水x噸,應交水費y元.
(1)若0<x≤6,請寫出y與x的函數關系式.
(2)若x>6,請寫出y與x的函數關系式.
(3)如果該戶居民這個月交水費27元,那么這個月該戶用了多少噸水?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李老師從“淋浴龍頭”受到啟發(fā).編了一個題目: 在數軸上截取從0到3的對應線段AB,實數m對應AB上的點M,如圖1;將AB折成正三角形,使點A,B重合于點P,如圖2;建立平面直角坐標系,平移此三角形,使它關于y軸對稱,且點P的坐標為(0,2),PM與x軸交于點N(n,0),如圖3.當m= 時,求n的值.
你解答這個題目得到的n值為( )
A.4﹣2
B.2 ﹣4
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圣誕老人上午8:00從家里出發(fā),騎車去一家超市購物,然后從這家超市回到家中,圣誕老人離家的距離s(千米)和所經過的時間t(分鐘)之間的關系如圖所示,請根據圖象回答問題:
(1)圣誕老人去超市途中的速度是多少?回家途中的速度是多少?
(2)圣誕老人在超市逗留了多長時間?
(3)圣誕老人在來去的途中,離家2千米處的時間是幾時幾分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面一段文字:
問題:能化為分數形式嗎?
探求:步驟①設,步驟②,
步驟③,則,
步驟④,解得:.
根據你對這段文字的理解,回答下列問題:
(1)步驟①到步驟②的依據是什么;
(2)仿照上述探求過程,請你嘗試把化為分數形式:
(3)請你將化為分數形式,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com