如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,邊長為6的正三角形OAB的OA邊在x軸的正半軸上,BC是正三角形OAB的高.點P、Q同時從點O出發(fā),點P以1 單位/s的速度精英家教網(wǎng)沿O→B→A向點A勻速運動,點Q以1 單位/s的速度沿x軸的正半軸方向勻速運動.當(dāng)P點到達(dá)點A時Q也隨之停止運動.設(shè)運動時間為x秒(0<x≤12).
(1)求點B的坐標(biāo);
(2)當(dāng)點P、Q運動到直線PQ與邊OB垂直時,求點P運動的時間x的值;
(3)若△OPQ與△OBC重疊部分的面積為S(平方單位),求S與x的函數(shù)關(guān)系式;
(4)若6<x<12時,求點P、Q距離的最小值;并求出P、Q的距離最小時點P的坐標(biāo).
分析:(1)根據(jù)△OAB是正三角形,BC是正△OAB的高,得出OC=CA=
1
2
OA=
1
2
×6
=3,然后求出BC=tan60°×3=3
3
,即可得出點B的坐標(biāo);
(2)當(dāng)直線PQ⊥OB時.∠QPB=90°,因為∠ABO=60°所以∠1=30°,∠2=30°,因為∠AOP=60°所以∠Q=90°-60°=30°,所以∠α=∠Q,AP=AQ,列方程得12-x=x-6,解出方程即可;
(3)當(dāng)0<x<3,可得出S=
1
2
x•x•sin60°=
3
4
x2
,當(dāng)3≤x<6時,根據(jù)S=S△OP2Q2-S△CEQ2可得出S與x的函數(shù)關(guān)系式,當(dāng)6≤x<12時,根據(jù)S=S△OCF=
1
2
×3•CF
,作P3H⊥OA,根據(jù)△OCH∽△OHP3得出
CF
P3H
=
OC
OH
,把x代入,再進(jìn)行整理即可得出S與x的函數(shù)關(guān)系式;
(4)根據(jù)PQ2=P3H2+HQ23得出PQ2=-x2-18x+108,因為6<x<12,所以當(dāng)x=-9時,求出PQ2有最小值
4×(-1)×108-182
-4
,然后求出PQ的最小值=
27
=3
3
,即可得出P的坐標(biāo).
解答:解:(1)∵△OAB是正三角形,BC是正△OAB的高,
∴OC=CA=
1
2
OA=
1
2
×6
=3,
∴BC=tan60°×3=3
3
,
∴點B的坐標(biāo)是B(3,3
3
)


(2)當(dāng)直線PQ⊥OB時.∠QPB=90°,精英家教網(wǎng)
∵∠ABO=60°∴∠1=30°∴∠2=30°,
∵∠AOP=60°∴∠Q=90°-60°=30°,
∴∠α=∠Q,AP=AQ,
∴12-x=x-6,
∴2x=18,
x=9;

(3)當(dāng)0<x<3,S=
1
2
x•x•sin60°=
3
4
x2
,
當(dāng)3≤x<6時,S=S△OP2Q2-S△CEQ2=
1
2
x•x•sin60°-
1
2
(x-3)•(x-3)•
3
=-
3
4
x2+3
3
x-
9
3
2
,
6≤x<12時,S=S△OCF=
1
2
×3•CF
精英家教網(wǎng)
作P3H⊥OA,
∵△OCF∽△OHP3,
CF
P3H
=
OC
OH
CF
(12-x)•
3
2
=
3
6-
12-x
2
,
CF=
3
3
x
(12-x)
S=S△OCF=
1
2
×3•
3
3
x
(12-x)=
54
3
x
-
9
3
2
,
∴S與x的函數(shù)關(guān)系式是:s=
54
3
x
-
9
3
2
,

(4)PQ2=P3H2+HQ23=[
3
2
(12-x)]
2
+(
12x
2
+x-6)
2
=x2-18x+108
,
∵6<x<12當(dāng)x=-
-18
2
=9
時,PQ2有最小值=
4×(-1)×108-182
-4
=27
,
∴PQ最小=
27
=3
3

∴P的坐標(biāo)是(
9
2
3
2
3
)
點評:本題主要考查了相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)相似三角形的性質(zhì)列出方程,要注意的是(3)中,要根據(jù)x的取值范圍分類求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案