【題目】如圖,在矩形紙片中,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過點(diǎn),連接.

1)求證:四邊形為菱形;

2)當(dāng)點(diǎn)邊上移動(dòng)時(shí),折痕的端點(diǎn),也隨之移動(dòng).

①當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖),求菱形的邊長;

②若限定,分別在邊,上移動(dòng),求出點(diǎn)在邊上移動(dòng)的最大距離.

【答案】1)見解析;(2)①菱形BFEP的邊長為cm,②點(diǎn)E在邊AD上移動(dòng)的最大距離為2cm.

【解析】

1)由折疊的性質(zhì)得出PB=PE,BF=EF,∠BPF=EPF,由平行線的性質(zhì)得出∠BPF=EFP,證出∠EPF=EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出結(jié)論;
2)①由矩形的性質(zhì)得出BC=AD=5cmCD=AB=3cm,∠A=D=90°,由對(duì)稱的性質(zhì)得出CE=BC=5cm,在RtCDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在RtAPE中,由勾股定理得出方程,解方程得出EP=cm即可;
②找到E點(diǎn)離A最近和最遠(yuǎn)的兩種情況即可求出點(diǎn)E在邊AD上移動(dòng)的最大距離.當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),點(diǎn)E離點(diǎn)A最近,由①知,此時(shí)AE=1cm;當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)E離點(diǎn)A最遠(yuǎn),此時(shí)四邊形ABQE為正方形,AE=AB=3cm,即可得出答案.

解:(1)∵折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,

∴點(diǎn)B與點(diǎn)E關(guān)于PQ對(duì)稱,

PB=PE,BF=EF,BPF=∠EPF.

又∵EFAB,

BPF=∠EFP,

EPF=∠EFP,

EP=EF,

BP=BF=FE=EP,

∴四邊形BFEP為菱形.

2如圖1, 

1

∵四邊形ABCD為矩形,

BC=AD=5cm,

CD=AB=3cm,A=∠D=90°.

∵點(diǎn)B與點(diǎn)E關(guān)于PQ對(duì)稱,

CE=BC=5cm.

RtCDE中,DE2=CE2-CD2,

DE2=5232,

DE=4cm,∴AE=ADDE=5-4=1cm).

RtAPE中,AE=1,AP=3-PB=3-PE,

EP2=12+(3EP2,解得EP=cm,

∴菱形BFEP的邊長為cm.

當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),如圖1,點(diǎn)EA點(diǎn)最近,由知,此時(shí)AE=1cm.

當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),如圖2,

2

點(diǎn)EA點(diǎn)最遠(yuǎn),此時(shí)四邊形ABQE為正方形,

AE=AB=3cm,

∴點(diǎn)E在邊AD上移動(dòng)的最大距離為2cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°△DBE后,再把△ABC沿射線平移至△FEGDE、FG相交于點(diǎn)H

1)判斷線段DE、FG的位置關(guān)系,并說明理由;

2)連結(jié)CG,求證:四邊形CBEG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D與點(diǎn)E分別是△ABC的邊長BCAC的中點(diǎn),△ABC的面積是20cm.

1)求△ABD與△BEC的面積;

2)△AOE與△BOD的面積相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用棋子按下列方式擺圖形,依此規(guī)律,第n個(gè)圖形比第(n1)個(gè)圖形多( )枚棋子.

A. 4nB. 5n4C. 4n3D. 3n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銀泰百貨名創(chuàng)優(yōu)品店購進(jìn)600個(gè)鑰匙扣,進(jìn)價(jià)為每個(gè)8元,第一周以每個(gè)12元的價(jià)格售出200個(gè),第二周若按每個(gè)12元的價(jià)格銷售仍可售出200個(gè),但商店為了適當(dāng)增加銷量,決定降價(jià)銷售.據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出50個(gè),但售價(jià)不得低于進(jìn)價(jià),單價(jià)降低元銷售,銷售一周后,商店對(duì)剩余鑰匙扣清倉處理,以每個(gè)6元的價(jià)格全部售出.

1)如果這批鑰匙扣共獲利1050元,那么第二周每個(gè)鑰匙扣的銷售價(jià)格為多少元?

2)這次降價(jià)活動(dòng),1050元是最高利潤嗎?若是,說明理由;若不是,求出最高利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)D從點(diǎn)C出發(fā),以2cm/s的速度沿折線C→A→B向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)E從點(diǎn)B出發(fā),以1cm/s的速度沿BC邊向點(diǎn)C運(yùn)動(dòng),E到C時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)。設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為ts().

(1)AB=__________cm, CE=__________cm;

(2)當(dāng)△BDE是直角三角形時(shí),求t的值;

(3)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,

①設(shè)平行四邊形CDEF的面積為Scm2,求S于t的關(guān)系式;

②是否存在某個(gè)時(shí)刻t,使CDEF為菱形?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家2015年的四個(gè)季度的用電量情況如表1,其中各種電器用電量情況如表2.

1

2

季度名稱

用電量/

電器

用電量/

第一季度

250

空調(diào)

250

第二季度

150

冰箱

400

第三季度

400

彩電

150

第四季度

200

其他

100

小明根據(jù)上面的數(shù)據(jù)制成如圖所示的統(tǒng)計(jì)圖.

根據(jù)以上三幅統(tǒng)計(jì)圖回答下列問題:

(1)從哪幅統(tǒng)計(jì)圖中可以看出各季度用電量變化情況?

(2)從哪幅統(tǒng)計(jì)圖中可以看出冰箱的用電量超過總用電量的?

(3)從哪幅統(tǒng)計(jì)圖中可以清楚地看出空調(diào)的用電量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形中,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱.

1)求直線BC的函數(shù)表達(dá)式;

2)設(shè)點(diǎn)Mx軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)My軸的平行線,交直線AB于點(diǎn)P,交直線BC于點(diǎn)Q,連接BM

①若∠MBC90°,求點(diǎn)P的坐標(biāo);

②若△PQB的面積為,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案