如圖,在等腰梯形ABCD中,AB∥CD,AD=BC=acm,∠A=60°,BD平分∠ABC,則這個梯形的周長是( )

A.4a cm
B.5a cm
C.6a cm
D.7a cm
【答案】分析:由四邊形是等腰梯形可以得出∠A=∠ABC=60°,∠ADC=∠C=120°,再根據(jù)BD平分∠ABC就可以得出∠ABD=∠CBD=30°,從而可以得出∠CDB=∠CBD,可以得到CD=BC,通過求出∠ADB=90°,運用勾股定理就可以求出AB的值,最后就可以求出梯形的周長.
解答:解:∵AB∥CD,AD=BC,
∴∠CDB=∠ABD.∠A=∠ABC.
∵BD平分∠ABC,
∴∠ABD=∠CBD=∠ABC.
∵∠A=60°,
∴∠CBA=60°,
∴∠ABD=∠CBD=30°,
∴∠CDB=30°.
∴∠CDB=∠CBD,
∴DC=BC.
∵BC=a,
∴CD=a.
∵∠A=60°,∠ABD=30°,
∴∠ADB=90°,
∴AB=2AD.
∵AD=a,
∴AB=2a.
∴梯形的周長為:a+a+a+2a=5acm.
故選B.
點評:本題考查了等腰梯形的性質(zhì)的運用,角平分線的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,勾股定理的運用及等腰梯形的周長.在解答中掌握等腰梯形的周長的算法是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設(shè)P、Q同時出發(fā)并運動了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案