如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對(duì)稱(chēng),并與y軸交于精英家教網(wǎng)點(diǎn)M,與x軸交于點(diǎn)A和B.
(1)求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式(不要求證明);
(2)若AB中點(diǎn)是C,求sin∠CMB;
(3)如果一次函數(shù)y=kx+b過(guò)點(diǎn)M,且于y=mx2+nx+p相交于另一點(diǎn)N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.
分析:(1)拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對(duì)稱(chēng),知關(guān)于y軸對(duì)稱(chēng)x變?yōu)?x,y軸值不變,所以易得y=x2+6(-x)+5,即對(duì)稱(chēng)后的表達(dá)式為y=ax2+bx+c,關(guān)于y軸對(duì)稱(chēng)只要把x變?yōu)?x就可以了;
(2)作輔助線過(guò)0作OE⊥MB,把∠CMB轉(zhuǎn)化到直角三角形中計(jì)算,就行了;
(3)根據(jù)已知關(guān)系解方程組得b值,最后待定系數(shù)求出k的值.
解答:解:(1)拋物線的解析式是y=x2-6x+5,y=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式為:y=ax2-bx+c.

(2)當(dāng)y=0時(shí)x2-6x+5=0x1=1x2=5所以A(1,0)B(5,0)C是AB的中點(diǎn)所以C(3,0)又因?yàn)镺B=OM=5?△OMB是等腰△過(guò)0作OE⊥MB?OE∥CD因?yàn)椤螮OB=45度,所以∠DCB=45度?CD=
2
Rt△OMC中OM=5,OC=3所以MC=
52+32
=
34
,
∴sin∠CMB=
CD
MC
=
2
34
=
17
17


(3)
i2-i+z=0
j2-j+z=0
,即
i=j(舍)
j=1-i
,精英家教網(wǎng)
又因?yàn)镹在y=kx+b上
又∵j=ki+bM在y=kx+b上,
∴b=5,
∴j=ki+5?1-i=ki+5?k=-1-
4
i
,
又∵N在y=x2-6x+5上,
所以
j=i2-6i+5
j=1-i

i1=1
i2=4
,即
k1=-5
k2=-2
點(diǎn)評(píng):此題考查函數(shù)圖象對(duì)稱(chēng)問(wèn)題和函數(shù)性質(zhì),運(yùn)用轉(zhuǎn)化思想把角放到直角三角形里解,點(diǎn)在函數(shù)上用待定系數(shù)求出各點(diǎn)坐標(biāo),從而求出k值,方法簡(jiǎn)單,過(guò)程較復(fù)雜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對(duì)稱(chēng),并與y軸交于點(diǎn)M,與x軸交于點(diǎn)A和B.求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式(不要求證明).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).設(shè)拋物線的頂點(diǎn)為D,求解下列問(wèn)題:
(1)求拋物線的解析式和D點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)D作DF∥y軸,交直線BC于點(diǎn)F,求線段DF的長(zhǎng),并求△BCD的面積;
(3)能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫(xiě)出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(-2,0).問(wèn):直線AC上是否存在點(diǎn)F,使得△ODF是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對(duì)稱(chēng),并與y軸交于點(diǎn)M,與x軸交于點(diǎn)A和B.
(1)求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關(guān)于y軸對(duì)稱(chēng)的二次函數(shù)解析式(不要求證明);
(2)若AB中點(diǎn)是C,求sin∠CMB;
(3)如果一次函數(shù)y=kx+b過(guò)點(diǎn)M,且于y=mx2+nx+p相交于另一點(diǎn)N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案