【題目】如圖,菱形ABCD中,∠ABC=60°,EAB中點,FBC上一點,GCD上一點,連接EF,FG,且∠BFE=∠CFG.

(1)若GCD中點吋,求證:EF=FG

2)設(shè),,求y芙于x的函數(shù)解析式.

【答案】1)見解析:(2.

【解析】

1)在BC上作點H,使BH=BE,并連接EH,根據(jù)AAS證明EHF≌△GCF即可得到結(jié)論;

2)在BC上作點H,使BH=BE,并連接EH,易證EHF∽△GCF,可得,設(shè)BH=CH=a,可得,過點DDKBC于點K,由,化簡后可得.

解:(1)在BC上作點H,使BH=BE,并連接EH,

易證BEH是正三角形

∴∠BHE=60°∴∠EHF=120°

又∵∠ABC=60°,AB//CD

∵∠C=120°

∴∠EHF=C

又∵∠BFE= CFG

∴△EHF≌△GCF

EF=FG

(2)BC上作點H,使BH=BE,并連接EH易證BEH是等邊三角形,

∴∠BHF=C=60°,

又∵∠BFE=CFG

∴△EHF∽△GCF,

,

,

,

∴又設(shè)BH=CH=a,則菱形邊長為2a,

,

過點DDKBC于點K

又∵,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC60°,∠C45°,點D,E分別為邊AB,AC上的點,且DEBCBDDE2,CE,BC.動點P從點B出發(fā),以每秒1個單位長度的速度沿BDEC勻速運動,運動到點C時停止.過點PPQBC于點Q,設(shè)△BPQ的面積為S,點P的運動時間為t,則S關(guān)于t的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車,計劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,因剛搬進新房不久,不熟悉情況.

1)若小明任意按下一個開關(guān),則下列說法正確的是   

A.小明打開的一定是樓梯燈

B.小明打開的可能是臥室燈

C.小明打開的不可能是客廳燈

D.小明打開走廊燈的概率是

2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)研究性學(xué)習(xí)小組制作了如下的三角函數(shù)計算圖尺:在半徑為10的半圓形量角器中,而一個直徑為10的圓,把刻度尺CA0刻度固定在半圓的圓心O處,刻度尺可以繞點O旋轉(zhuǎn).從圖中所示的圖尺可讀出sinAOB的值是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,點是對角線的交點,點是邊的中點,點延長線上,且.

求證:;

如果,請寫出圖中所有的等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】主題班會上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達成以下四個觀點:

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競爭,合作雙贏.

要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:

 觀點

頻數(shù) 

頻率 

 A

 a

 0.2

 B

 12

 0.24

 C

 8

 b

 D

 20

 0.4

(1)參加本次討論的學(xué)生共有   人;表中a   b   ;

(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);

(3)現(xiàn)準(zhǔn)備從A,BC,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市城市綠化工程招標(biāo),有甲、乙兩個工程隊投標(biāo),經(jīng)測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,再由甲、乙合作12天,共完成總工作量的三分之二.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工l天需付工程款3.5萬元,乙隊施工一天需付工程款2萬元,該工程由甲乙兩隊合作若干天后,再由乙隊完成剩余工作,若要求完成此項工程的工程款不超過186萬元,求甲、乙兩隊最多合作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2cm∠DAB=60°.點PA點出發(fā),以cm/s的速度,沿ACC作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當(dāng)P運動到C點時,P、Q都停止運動.設(shè)點P運動的時間為ts

1)當(dāng)P異于AC時,請說明PQ∥BC;

2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?

查看答案和解析>>

同步練習(xí)冊答案