【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C1落在邊AC上時(shí),設(shè)AC的對(duì)應(yīng)邊A1C1與AB的交點(diǎn)為E,則∠BEC1___°.

【答案】72

【解析】

根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠C72°,根據(jù)三角形的內(nèi)角和得到∠CBC1180°72°72°36°,求得∠ABC172°36°36°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到A1C1B=∠C72°,于是得到結(jié)論.

ABAC,∠C72°,

∴∠ABC=∠C72°

∴∠CBC1180°72°72°36°,

∴∠ABC172°36°36°,

∵△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到A1BC1

A1C1B=∠C72°,

∴∠BEC172°,

故答案為:72

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+c(a≠0)y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B(4,0),拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)DCEAB,并與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E現(xiàn)有下列結(jié)論:①b24a0;②b0;③5a+b0;④AD+CE4.其中正確結(jié)論個(gè)數(shù)為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某同學(xué)對(duì)一道作業(yè)題的解題思路,課堂上師生據(jù)此展開(kāi)了討論.問(wèn)題如圖,已知A(1,)、B(4,0),∠OAB的平分線AC交x軸于點(diǎn)C,求OC的長(zhǎng).思路:作AD⊥OB,CE⊥AB,CF⊥OA

①A坐標(biāo)→OD=1,AD=,OA=2→∠AOC=60°;

②A、B坐標(biāo)→OA=2,OB=4,AB=2→∠OAB=90°;

③AC平分∠OAB→CE=CF;

④S△AOC+S△ABC=S△AOB→AOCF+ABCE=OAAB→CF=3﹣;

⑤綜上,Rt△OCF中,OC=﹣2.可以?xún)?yōu)化嗎?

(1)同學(xué)們發(fā)現(xiàn)不需要證“∠OAB=90°”也能求解,簡(jiǎn)要說(shuō)明理由.幾位同學(xué)提出了不同的思路

①甲說(shuō):S△AOC和S△ABC的面積之比既是,又是,從而;

②乙說(shuō):在AB邊上取點(diǎn)G,使AG=AO,連接CG,可知BG的長(zhǎng)即為所求;

③丙說(shuō):延長(zhǎng)AC交△AOB的外接圓于N,再利用一次函數(shù)或相似求出OC.

請(qǐng)你選擇其中一種解法,利用圖2和已有步驟完成解答.有什么收獲?

(2)面積法是圖形問(wèn)題中確定數(shù)量關(guān)系的有效方法,請(qǐng)利用面積法求解:如圖1,⊙O與△ABC的邊AC,邊BA、BC的延長(zhǎng)線AE、CF相切,切點(diǎn)分別為D、E、F.設(shè)△ABC的面積為S,BC=a,AC=b,AB=c,請(qǐng)用含S、a、b、c的式子表示⊙O的半徑R,直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)MN同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)MN運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹(shù)CD的高度,他們先在點(diǎn)A處測(cè)得樹(shù)頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹(shù)頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹(shù)CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】8.7

【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長(zhǎng)度,然后在直角△BDC中,利用三角函數(shù)即可求解.

試題解析:∵∠CBD=∠A+∠ACB,

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:這棵樹(shù)CD的高度為8.7米.

考點(diǎn):解直角三角形的應(yīng)用

型】解答
結(jié)束】
23

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一點(diǎn),直線BP與y軸相交于點(diǎn)C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當(dāng)點(diǎn)P是線段BC的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);

(3)在(2)的條件下,求sin∠OCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3BC4,將對(duì)角線AC繞對(duì)角線交點(diǎn)O旋轉(zhuǎn),分別交邊ADBC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DPAE,連接PE、PF,設(shè)AEx0x3).

1)填空:PC   ,FC  。(用含x的代數(shù)式表示)

2)求△PEF面積的最小值;

3)在運(yùn)動(dòng)過(guò)程中,PEPF是否成立?若成立,求出x的值;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC在第一象限, ,AB=AC=2,點(diǎn)A在直線上,其中點(diǎn)A的橫坐標(biāo)為1,且AB∥軸,AC∥軸,若雙曲線有交點(diǎn),則k的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A

1)判斷直線MN⊙O的位置關(guān)系,并說(shuō)明理由;

2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為調(diào)查本校學(xué)生平均每天完成作業(yè)所用時(shí)間的情況,隨機(jī)調(diào)查了50名同學(xué),如圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)若該校共有1 800名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生平均每天完成作業(yè)所用總時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案