【題目】堅持農(nóng)業(yè)農(nóng)村優(yōu)先發(fā)展,按照產(chǎn)業(yè)興旺、生態(tài)宜居的總要求,統(tǒng)籌推進農(nóng)村經(jīng)濟建設.洛寧縣某村出售特色水果(蘋果).規(guī)定如下:
品種 | 購買數(shù)量低于50箱 | 購買數(shù)量不低于50箱 |
新紅星 | 原價銷售 | 以八折銷售 |
紅富士 | 原價銷售 | 以九折銷售 |
如果購買新紅星40箱,紅富士60箱,需付款4300元;如果購買新紅星100箱,紅富士35箱,需付款4950元.
(1)每箱新紅星、紅富士的單價各多少元?
(2)某單位需要購置這兩種蘋果120箱,其中紅富士的數(shù)量不少于新紅星的一半,并且不超過60箱,如何購買付款最少?請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。
(1)求證:D是BC的中點;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△OAB的邊OB在x軸上,過點A的反比例函數(shù)y=的圖象交AB于點C,且AC:CB=2:1,S△OAC=,則k的值為( 。
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為5的正方形中,以B為圓心,BA為半徑作弧AC,F為弧AC上一動點,過點F作⊙B的切線交AD于點P,交DC于點Q.
(1)求證:PQ=AP+CQ;
(2)分別延長PQ、BC,延長線相交于點M,如果AP=2,求BM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線在坐標系中的位置如圖所示,它與,軸的交點分別為,,是其對稱軸上的動點,根據(jù)圖中提供的信息,給出以下結論:①,②是的一個根,③若,,則.其中正確的有______個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,E為AB的中點.
(1)將線段AB繞點O逆時針旋轉一定角度,使點A與點B重合,點B與點C重合,用無刻度直尺作出點O的位置,保留作圖痕跡;
(2)將△ABD繞點D逆時針旋轉某個角度,得到△CFD,使DA與DC重合,用無刻度直尺作出△CFD,保留作圖痕跡.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,過原點的拋物線與軸交于另一點,拋物線頂點的坐標為,其對稱軸交軸于點.
(1)求拋物線的解析式;
(2)如圖2,點為拋物線上位于第一象限內(nèi)且在對稱軸右側的一個動點,求使面積最大時點的坐標;
(3)在對稱軸上是否存在點,使得點關于直線的對稱點滿足以點、、、為頂點的四邊形為菱形.若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】合與實踐﹣﹣探究圖形中角之間的等量關系及相關問題.
問題情境:
正方形ABCD中,點P是射線DB上的一個動點,過點C作CE⊥AP于點E,點Q與點P關于點E對稱,連接CQ,設∠DAP=α(0°<α<135°),∠QCE=β.
初步探究:
(1)如圖1,為探究α與β的關系,勤思小組的同學畫出了0°<α<45°時的情形,射線AP與邊CD交于點F.他們得出此時α與β的關系是β=2α.借助這一結論可得當點Q恰好落在線段BC的延長線上(如圖2)時,α= °,β= °;
深入探究:
(2)敏學小組的同學畫出45°<α<90°時的圖形如圖3,射線AP與邊BC交于點G.請猜想此時α與β之間的等量關系,并證明結論;
拓展延伸:
(3)請你借助圖4進一步探究:①當90°<α<135°時,α與β之間的等量關系為 ;
②已知正方形邊長為2,在點P運動過程中,當α=β時,PQ的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com