【題目】閱讀情境:在綜合實(shí)踐課上,同學(xué)們探究“全等的等腰直角三角形圖形變化問題”
如圖1,,其中,,此時(shí),點(diǎn)與點(diǎn)重合,
操作探究1:(1)小凡將圖1中的兩個(gè)全等的和按圖2方式擺放,點(diǎn)落在上,所在直線交所在直線于點(diǎn),連結(jié),求證:.
操作探究2:(2)小彬?qū)D1中的繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角度,然后,分別延長(zhǎng),,它們相交于點(diǎn).如圖3,在操作中,小彬提出如下問題,請(qǐng)你解答:
①時(shí),求證:為等邊三角形;
②當(dāng)__________時(shí),.(直接回答即可)
操作探究3:(3)小穎將圖1中的繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)角度,線段和相交于點(diǎn),在操作中,小穎提出如下問題,請(qǐng)你解答:
①如圖4,當(dāng)時(shí),直接寫出線段的長(zhǎng)為_________.
②如圖5,當(dāng)旋轉(zhuǎn)到點(diǎn)是邊的中點(diǎn)時(shí),直接寫出線段的長(zhǎng)為____________.
【答案】(1)見解析;(2)①見解析;②;(3)①;②
【解析】
(1)證明Rt△AMB≌Rt△AMD即可解決問題.
(2)①證明∠FCE=∠FEC=60°即可解決問題.
②根據(jù)平行線的判定定理即可解決問題.
(3)①連接EC,證明△AEC是等邊三角形,利用勾股定理求出AE即可解決問題.
②如圖5中,連接AF,BD交于點(diǎn)O.首先證明EC=BD,再證明OB=OD,利用面積法求出OB即可解決問題.
(1)證明:如圖2,
,,,
,
.
(2)①證明:如圖3中,
,,
,
,
,
,
是等邊三角形.
②解:當(dāng)時(shí),.理由如下:
∵,
∴,
,
∴,
當(dāng)時(shí),.
故答案為.
(3)①解:如圖4中,連接,
,,
是等邊三角形,
,,
,
.
故答案為.
②解:如圖5中,連接,交于點(diǎn).
,,,
,
,
,
,
,
,
,,
,
.
,,
垂直平分線段,
,
在中,
,,,
,
,
,
,
,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古代名著《算學(xué)啟蒙》中有一題:“良馬日行二百四十里.駑馬日行一百五十里.駑馬先行十二日,問良馬幾日追及之”,如圖是兩馬行走的路程關(guān)于時(shí)間的函數(shù)圖像.
(1)的函數(shù)解析式為_______.
(2)求點(diǎn)的坐標(biāo).
(3)若兩匹馬先在甲站,再從甲站出發(fā)行往乙站,并停留在乙站,且甲、乙兩站之間的路程為里,請(qǐng)問為何值時(shí),駑馬與良馬相距里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計(jì)自己眼睛距地面EF=1.5m,當(dāng)他站在F點(diǎn)時(shí)恰好看到大樹頂端C點(diǎn).已知此時(shí)他與小樹的距離BF=2m,則兩棵樹之間的距離BD是( )
A. 1m B. m C. 3m D. m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個(gè)數(shù)( )
①近似數(shù)精確到十分位:
②在,,,中,最小的數(shù)是
③如圖①所示,在數(shù)軸上點(diǎn)所表示的數(shù)為
④反證法證明命題“一個(gè)三角形中最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”
⑤如圖②,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn)
圖① 圖②
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點(diǎn)為P.
(1)求拋物線解析式;
(2)在拋物線是否存在點(diǎn)E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)F,使得以A、B、P、F為頂點(diǎn)的四邊形為平行四邊形?直接寫出所有符合條件的點(diǎn)F的坐標(biāo),并求出平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月17日是我國(guó)第6個(gè)扶貧日,也是第27個(gè)國(guó)際消除貧困日.為組織開展好銅陵市2019年扶貧日系列活動(dòng),促進(jìn)我市貧困地區(qū)農(nóng)產(chǎn)品銷售,增加貧困群眾收入,加快脫貧攻堅(jiān)步伐.我市決定將一批銅陵生姜送往外地銷售.現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20箱生姜,且甲種貨車裝運(yùn)1000箱生姜所用車輛與乙種貨車裝運(yùn)800箱生姜所用車輛相等.
(1)求甲、乙兩種貨車每輛車可裝多少箱生姜?
(2)如果這批生姜有1520箱,用甲、乙兩種汽車共16輛來裝運(yùn),甲種車輛剛好裝滿,乙種車輛最后一輛只裝了40箱,其它裝滿,求甲、乙兩種貨車各有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點(diǎn).
求反比例函數(shù)和一次函數(shù)的解析式;
求的面積;
根據(jù)圖象直接寫出,當(dāng)為何值時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(2,0),點(diǎn)B (0,1),過點(diǎn)A的直線l垂直于線段AB,點(diǎn)P是直線l上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點(diǎn)C落在點(diǎn)D處,若以A,D,P為頂點(diǎn)的三角形與△ABP相似,則所有滿足此條件的點(diǎn)P的坐標(biāo)為___________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com