【題目】某商店通過調低價格的方式促銷n個不同的玩具,調整后的單價y(元)與調整前的單價x(元)滿足一次函數(shù)關系,如表:

第1個

第2個

第3個

第4個

第n個

調整前的單價x(元)

x1

x2=6

x3=72

x4

xn

調整后的單價y(元)

y1

y2=4

y3=59

y4

yn

已知這n個玩具調整后的單價都大于2元.
(1)求y與x的函數(shù)關系式,并確定x的取值范圍;
(2)某個玩具調整前單價是108元,顧客購買這個玩具省了多少錢?
(3)這n個玩具調整前、后的平均單價分別為 ,猜想 的關系式,并寫出推導過程.

【答案】
(1)解:設y=kx+b,由題意得x=6,y=4,x=72,y=59,

,解得 ,

∴y與x的函數(shù)關系式為y= x﹣1,

∵這n個玩具調整后的單價都大于2元,

x﹣1>2,解得x> ,

∴x的取值范圍是x>


(2)解:將x=108代入y= x﹣1得y= ×108﹣1=89,

108﹣89=19,

答:顧客購買這個玩具省了19元


(3)解: = ﹣1,

推導過程:由(1)得y1= x1﹣1,y2= x2﹣1,…yn= xn﹣1,

= (y1+y2+…+yn)= [( x1﹣1)+( x2﹣1)+…+( xn﹣1)]= [ (x1+x2+…+xn)﹣n]= × ﹣1= ﹣1


【解析】(1)設y=kx+b,根據(jù)題意列方程組即可得到結論,再根據(jù)已知條件得到不等式于是得到x的取值范圍是x> ;(2)將x=108代入y= x﹣1即可得到結論;(3)由(1)得y1= x1﹣1,y2= x2﹣2,…yn= xn﹣1,根據(jù)求平均數(shù)的公式即可得到結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB= ,BC=2,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則AE的長是(
A.
B.
C.1
D.1.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,BC=3,點E為射線BC上一動點,將△ABE沿AE折疊,得到△AB′E.若B′恰好落在射線CD上,則BE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某項針對18~35歲的青年人每天發(fā)微博數(shù)量的調查中,設一個人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當m≥10時為A級,當5≤m<10時為B級,當0≤m<5時為C級.現(xiàn)隨機抽取30個符合年齡條件的青年人開展每人“日均發(fā)微博條數(shù)”的調查,所抽青年人的“日均發(fā)微博條數(shù)”的數(shù)據(jù)如下表:

11

10

6

15

9

16

13

12

0

8

2

8

10

17

6

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12


(1)求樣本數(shù)據(jù)中為A級的頻率;
(2)試估計1000個18~35歲的青年人中“日均發(fā)微博條數(shù)”為A級的人數(shù);
(3)從樣本數(shù)據(jù)為C級的人中隨機抽取2人,用列舉法求抽得2個人的“日均發(fā)微博條數(shù)”都是3的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動.設∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關系圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某幾何體的三視圖,這個幾何體的側面積是(
A.6π
B.2 π
C. π
D.3π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為x=1,則下列結論中錯誤的是(
A.abc<0
B.a﹣b+c<0
C.b2﹣4ac>0
D.3a+c>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知AB為⊙O的直徑,點C為 的中點,點D在 上,連接BD、CD、BC、AD、BC與AD相交于點E.
(1)求證:∠C+∠CBD=∠CBA;
(2)如圖2,過點C作CD的垂線,分別與AD,AB,⊙O相交于點F、G、H,求證:AF=BD;
(3)如圖3,在(2)的條件下,連接BF,若BF=BC,△CEF的面積等于3,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:21 tan60°+(π﹣2015)0+|﹣ |;
(2)解方程:x2﹣1=2(x+1).

查看答案和解析>>

同步練習冊答案