【題目】我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設(shè)它的面積為S.
(1)如圖①,點(diǎn)M為AD上任意一點(diǎn),若△BCM的面積為S1,則S1:S= ;
(2)如圖②,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關(guān)系式為 ;
(3)如圖③,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),△PAB的面積為3,△PBC的面積為7,求△PBD的面積.
【答案】(1)1:2;(2)S′+S′′=S;(3)4
【解析】
(1)由四邊形ABCD是平行四邊形,AD∥BC,AB∥CD,可得△BCM與ABCD等底等高,則可求得答案;
(2)首先過點(diǎn)P作PE⊥AB于點(diǎn)E,延長(zhǎng)EP交CD于點(diǎn)F,可得S′+S″=;
(3)由△PAB的面積為3,△PBC的面積為7,根據(jù)(1),(2)可得:S△PBD=S四邊形PBCD﹣S△BCD=S△PBC+S△PCD﹣S△BCD,繼而求得答案.
解:(1)∵四邊形ABCD是平行四邊形,AD∥BC,AB∥CD,
∴△BCM與ABCD等底等高,
∴S1:S=1:2;
故答案為1:2;
(2)S′+S′′=S;理由如下:
理由:過點(diǎn)P作PE⊥AB于點(diǎn)E,延長(zhǎng)EP交CD于點(diǎn)F,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴PF⊥CD,
∴S′+S″=,
故答案為S′+S′′=S;
(3)∵S△PAB+S△PCD=S=S△BCD,S△PAB=3,S△PBC=7,
∴S△PBD=S四邊形PBCD-S△PCD,
=S△PBC+S△PCD-S△BCD,
即S△PBD=7+(S-3)-S,
=7-3,
=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的弦,半徑OA=2cm,∠AOB=120°
(1)求tan∠OAB的值;
(2)求圖中陰影部分的面積S;
(3)在⊙O上一點(diǎn)P從A點(diǎn)出發(fā),沿逆時(shí)針方向運(yùn)動(dòng)一周,回到點(diǎn)A,在點(diǎn)P的運(yùn)動(dòng)過程中,滿足S△POA=S△AOB時(shí),直接寫出P點(diǎn)所經(jīng)過的弧長(zhǎng)(不考慮點(diǎn)P與點(diǎn)B重合的情形).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動(dòng)點(diǎn) E 從 A點(diǎn)出發(fā)以 3 厘米/秒沿射線 AN 運(yùn)動(dòng),點(diǎn) D 為射線 BM 上一動(dòng)點(diǎn), 隨著 E 點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持 ED=CB,當(dāng)點(diǎn) E 經(jīng)過______秒時(shí),△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)興趣小組成員張廣益對(duì)本年級(jí)期中考試數(shù)學(xué)成績(jī)(成績(jī)?nèi)≌麛?shù),滿分為100分)做了統(tǒng)計(jì)分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖.請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
⑴填充頻率分布表中的空格:a ,b ,c ;
⑵補(bǔ)全頻率分布直方圖;
⑶已知本年級(jí)共計(jì)1700名學(xué)生,若競(jìng)賽成績(jī)?cè)?/span>90分以上(不含90分)為優(yōu)秀,估算本年級(jí)數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)寬的比為3:1,在溫室內(nèi),沿前后兩側(cè)的內(nèi)墻各留2.5m寬的空地放置工具,其他兩側(cè)內(nèi)墻各留1m寬的通道.中間區(qū)域再留1m寬的通道,通道與前后墻平行,剩余空地(陰影部分)為種植區(qū),當(dāng)種植區(qū)面積是300m2,求矩形溫室的長(zhǎng)與寬是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)圖像經(jīng)過和兩點(diǎn)
(1)求這個(gè)函數(shù)解析式;
(2)過點(diǎn)B作直線與軸交于點(diǎn),若三角形的面積為10,試求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,直線與直線、分別相交于C、D兩點(diǎn).
(1)如圖a,有一動(dòng)點(diǎn)P在線段CD之間運(yùn)動(dòng)(不與C、D兩點(diǎn)重合),問在點(diǎn)P的運(yùn)動(dòng)過程中,是否始終具有∠3+∠1=∠2這一關(guān)系,為什么?
(2)如圖b,當(dāng)動(dòng)點(diǎn)P線段CD之外運(yùn)動(dòng)(不與C、D兩點(diǎn)重合),問上述結(jié)論是否成立?若不成立,試寫出新的結(jié)論并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( 。
A. 一次函數(shù)y=﹣2x+3,y隨x的增大而減小,
B. 反比例函數(shù)中,y隨x的增大而增大,
C. 拋物線y=x2+1與y=x2﹣1的形狀相同,只是位置不同,
D. 二次函數(shù)y=﹣2(x﹣2)2+3中,當(dāng)x>2時(shí),y隨x的增大而減小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com