【題目】地球七大洲的總面積約是149 480 000km2,對(duì)這個(gè)數(shù)據(jù)保留3個(gè)有效數(shù)字可表示為( )

A. 149km2 B. 1.5×108km2 C. 1.49×108km2 D. 1.50×108km2

【答案】C

【解析】分析:本題考查的是用科學(xué)記數(shù)法表示較大的數(shù).

解析:149 480 000 km2= 1.49×108km2.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c過點(diǎn)A1,4),B﹣2,﹣5

1)求此拋物線的解析式;

2)當(dāng)y0時(shí),x的取值范圍是 (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按圖填空, 并注明理由

已知: 如圖, ∠1=∠2, ∠3=∠E. 求證: ADBE

證明: ∵∠1 = ∠2 (已知)

( )

∴ ∠E = ∠ ( )

又∵ ∠E = ∠3 ( 已知 )

∴ ∠3 = ∠ ( 等量代換 )

( 內(nèi)錯(cuò)角相等,兩直線平行 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某制藥廠兩年前生成1噸某種藥品的成本是100萬元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸這種藥品的成本為81萬元,設(shè)這種藥品成本的年平均下降率為x,根據(jù)題意所列方程為( )
A.100(1+x)2=81
B.100(1﹣x)2=81
C.81(1+x)2=100
D.81(1﹣x)2=100

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)B作BPAC,過點(diǎn)C作CPBD,BP與CP相交于點(diǎn)P.

(1)判斷四邊形BPCO的形狀,并說明理由;

(2)若將平行四邊形ABCD改為菱形ABCD,其他條件不變,得到的四邊形BPCO是什么四邊形,并說明理由;

(3)若得到的是正方形BPCO,則四邊形ABCD是 .(選填平行四邊形、矩形、菱形、正方形中你認(rèn)為正確的一個(gè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次中考體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

1)本次抽樣測(cè)試的學(xué)生人數(shù)是 ;

2)圖1α的度數(shù)是 ,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該縣九年級(jí)有學(xué)生3500名,如果全部參加這次中考體育科目測(cè)試,請(qǐng)估計(jì)不及格的人數(shù)為

4)測(cè)試?yán)蠋熛霃?/span>4位同學(xué)(分別記為EF、GH,其中E為小明)中隨機(jī)選擇兩位同學(xué)了解平時(shí)訓(xùn)練情況,請(qǐng)用列表或畫樹形圖的方法求出選中小明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】0.00025用科學(xué)計(jì)數(shù)法表示為(

A. 2.5×104 B. 0.25×10-4 C. 2.5×10-4 D. 25×10-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=40°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)(AB、C不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°

(1)如圖1,若ABON,則①∠ABO的度數(shù)是 ;

②當(dāng)∠BAD=ABD時(shí),x= ;當(dāng)∠BAD=BDA時(shí),x=

(2)如圖2,若ABOM,則是否存在這樣的x的值,使得ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ADBCA=BCD=ABD,DE平分ADB,下列說法:ABCD;EDCD③∠DFC=ADC﹣DCE;SEDF=SBCF,其中正確的結(jié)論是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案