【題目】如圖,在AOB中,AOB90°,OA6,OB8,動點Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設運動時間為t秒(0t≤5),以P為圓心,PA長為半徑的PAB、OA的另一個交點分別為C、D,連結(jié)CDCQ

當點Q與點D重合時,求t的值;

ACQ是等腰三角形,求t的值;

P與線段QC只有一個公共點,求t的取值范圍.

【答案】(1) (2) 或者或者.;(3) 或者

【解析】

(1)Q與點D重合時,先證明 ,得到 ,利用平行線分線段成比例,找出AD的長,利用OQ+DA=OA,求出t的值.

(2)分三種情況進行討論,AQ=ACQC=CA;QC=QA,利用等腰三角形性質(zhì)和三角形相似求出.

(3)一個交點,分情況討論,當圓PQC相切的時候,以及點QD重合的時候進行討論,便可找出t的取值范圍.

解: CA是直徑,AOB90°

AOB中,AOB90°,OA6,OB8中.

秒時,點Q與點D重合.

2)若ACQ是等腰三角形時,分三種情況討論.

AQ=AC時,即AC=AQ=2t,OQ=t

即:

QC=CA時,即QC=CA=2t,由(1)知

即:

QC=QA時,過點Q,AE=t,AQ=6-t

即:

綜上所述,當ACQ是等腰三角形時,或者或者

3)當QC與圓P相切時,

即:

解得:

時,圓PQC只有一個交點.

時,由(1)知:

時,圓PQC只有一個交點.

故:當圓PQC只有 一個交點時,t的范圍:或者

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,點的坐標為,是第一象限內(nèi)任意一點,連接 ,若,則就叫做點的“雙角坐標”.例如:點的“雙角坐標”為.若點軸的距離為,則的最小值為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是半圓的直徑,點是半圓上的一個動點,的角平分線交圓弧于點,過點于點

1)求證:是半圓的切線;

2)填空:,則__________

連接、,當的度數(shù)為__________時,四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著技術(shù)的發(fā)展,人們對各類產(chǎn)品的使用充滿期待.某公司計劃在某地區(qū)銷售第一款產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價格將隨銷售周期的變化而變化.設該產(chǎn)品在第為正整數(shù))個銷售周期每臺的銷售價格為元,之間滿足如圖所示的一次函數(shù)關(guān)系.

1)求之間的關(guān)系式;

2)設該產(chǎn)品在第個銷售周期的銷售數(shù)量為(萬臺),的關(guān)系可用來描述.根據(jù)以上信息,試問:哪個銷售周期的銷售收入最大?此時該產(chǎn)品每臺的銷售價格是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學生,其中安全意識為很強的學生占被調(diào)查學生總數(shù)的百分比是 ;

(2)請將條形統(tǒng)計圖補充完整;

(3)該校有1800名學生,現(xiàn)要對安全意識為淡薄”、“一般的學生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學生約有 名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場開業(yè),為了活躍氣氛,用紅、黃、藍三色均分的轉(zhuǎn)盤設計了兩種抽獎方案,凡來商場消費的顧客都可以選擇一種抽獎方案進行抽獎(若指針恰好停在分割線上則重轉(zhuǎn)).

方案一:轉(zhuǎn)動轉(zhuǎn)盤一次,指針落在紅色區(qū)域可領取一份獎品;

方案二:轉(zhuǎn)動轉(zhuǎn)盤兩次,指針落在不同顏色區(qū)域可領取一份獎品.

1)若選擇方案一,則可領取一份獎品的概率是   ;

2)選擇哪個方案可以使領取一份獎品的可能性更大?請用列表法或畫樹狀圖法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線yax2+bx+x軸分別交于點A(﹣1,0),B30),點C是頂點.

1)求拋物線的解析式;

2)如圖1,線段DE是射線AC上的一條動線段(點D在點E的下方),且DE2,點D從點A出發(fā)沿著射線AC的方向以每秒2個單位長度的速度運動,以DE為一邊在AC上方作等腰RtDEF,其中∠EDF90°,設運動時間為t秒.

D的坐標是   (用含t的代數(shù)式表示);

當直線BC與△DEF有交點時,請求出t的取值范圍;

3)如圖2,點P是△ABC內(nèi)一動點,BP,點MN分別是ABBC邊上的兩個動點,當△PMN的周長最小時,請直接寫出四邊形PNBM面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDADBC相交于點E,AF平分∠BAD,交BC于點F,交CD的延長線于點G

1)若∠G=29°,求∠ADC的度數(shù);

2)若點FBC的中點,求證:AB=AD+CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢頭,各地教育部門在推遲各級學校開學時間的同時提出聽課不停學的要求,各地學校也都開展了遠程網(wǎng)絡教學,某校集中為學生提供四類在線學習方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學生的需求,該校通過網(wǎng)絡對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請補全條形圖;

3)請求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠程網(wǎng)絡教學活動,請求出小寧和小娟選擇同一種學習方式的概率.

查看答案和解析>>

同步練習冊答案