【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α,將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADC,連接OD.

(1)求證:△COD是等邊三角形.
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀.
(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?

【答案】
(1)證明:由旋轉(zhuǎn)的性質(zhì)知△ADC≌△BOC,
∴DC=OC.
又∵∠DCO=60°,∴△COD是等邊三角形
(2)解:∵由旋轉(zhuǎn)的性質(zhì)知△ADC≌△BOC,
∴α=∠ADC=150°,
∵△COD是等邊三角形.
∴∠ODC=60°,
∴∠ADO=90°.
∴△AOD是直角三角形.
(3)解:∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∠DAO=180°-(190°-α)-(α-60°)=50°.
若∠ADO=∠AOD,即α-60°=190°-α,∴α=125°;
若∠ADO=∠DAO,即α-60°=50°,∴α=110°;
若∠AOD=∠DAO,即190°-α=50°.∴α=140°.
綜上所述,當(dāng)α=125°或110°或140°時(shí),△AOD是等腰三角形.
【解析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出DC=OC及∠DCO=60°,再根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形,即可證得結(jié)論。
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到△ADC≌△BOC,再根據(jù)全等三角形的性質(zhì)求出∠ADC的度數(shù),再根據(jù)等邊三角形的性質(zhì)求出∠ODC的度數(shù),然后根據(jù)∠ADO=∠ADC-∠ODC,求出∠ADO的度數(shù),就可判斷△AOD的形狀。
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)分別用含α的式子表示出∠AOD,∠ADO,∠DAO的度數(shù),再分三種情況討論:∠ADO=∠AOD;∠ADO=∠DAO;∠AOD=∠DAO,計(jì)算即可求出滿足條件的α的值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是(
A.用一個(gè)平面去截一個(gè)圓錐,可以是橢圓
B.棱柱的所有側(cè)棱長(zhǎng)都相等
C.用一個(gè)平面去截一個(gè)圓柱體,截面可以是梯形
D.用一個(gè)平面去截一個(gè)長(zhǎng)方體截面不能是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程mxm1m+20是一元一次方程,則這個(gè)方程的解x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1-,1+)在雙曲線x<0)上

(1) 求k的值

(2) 在y軸上取點(diǎn)B(0,1),問(wèn)雙曲線上是否存在點(diǎn)D,使得以AB、AD為斜邊的平行四邊形ACBD的頂點(diǎn)Cx軸的負(fù)半軸上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)補(bǔ)全頻數(shù)分布直方圖;

(2)求扇形統(tǒng)計(jì)圖中m的值和“E”組對(duì)應(yīng)的圓心角度數(shù);

(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊△ABC中,AO是BC邊上的高,D為AO上一點(diǎn),以CD為一邊,在CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE
(2)過(guò)點(diǎn)C作CH⊥BE,交BE的延長(zhǎng)線于H,若BC=8,求CH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有客房200間供游客居住,當(dāng)每間客房的定價(jià)為每天180元時(shí),客房恰好全部住滿;如果每間客房每天的定價(jià)每增加10元,就會(huì)減少4間客房出租.設(shè)每間客房每天的定價(jià)增加 元,賓館出租的客房為 間.求:
(1) 關(guān)于 的函數(shù)關(guān)系式;
(2)如果某天賓館客房收入38400元,那么這天每間客房的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問(wèn)題.為此市教育局對(duì)本市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)此次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生;

(2)將圖①補(bǔ)充完整;

(3)求出圖②中C級(jí)所占的圓心角的度數(shù);

(4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)角與它的補(bǔ)角的度數(shù)之比為18,求這個(gè)角的余角的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案