a
分析:延長EP交AB于G,延長FP交BC于H,然后證明△PFG和△PDH是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出PF=PG,PD=DH,再證明四邊形BDPG和四邊形CEPH是平行四邊形,根據(jù)平行四邊形的對邊相等可得PG=BD,PE=CH,從而求出PD+PE+PF=BC.
解答:
解:PD+PE+PF=a.理由如下:
如圖,延長EP交AB于G,延長FP交BC于H,
∵PE∥BC,PF∥AC,△ABC是等邊三角形,
∴∠PGF=∠B=60°,∠PFG=∠A=60°,
∴△PFG是等邊三角形,
同理可得△PDH是等邊三角形,
∴PF=PG,PD=DH,
又∵PD∥AB,PE∥BC,
∴四邊形BDPG是平行四邊形,
∴PG=BD,
∴PD+PE+PF=DH+CH+BD=BC=a.
故答案為a.
點評:本題考查了等邊三角形的判定與性質(zhì),平行四邊形的判定,作輔助線,把PD、PE、PF轉(zhuǎn)化為等邊三角形△ABC的一條邊是解題的關(guān)鍵.