【題目】一條公路旁依次有三個村莊,甲乙兩人騎自行車分別從村、村同時出發(fā)前往村,甲乙之間的距離與騎行時間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:①兩村相距10;②出發(fā)1.25后兩人相遇;③甲每小時比乙多騎行8;④相遇后,乙又騎行了15或65時兩人相距2.其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
【答案】D
【解析】
根據(jù)題意結(jié)合一次函數(shù)的圖像與性質(zhì)即可一一判斷.
解:
由圖象可知村、村相離10,故①正確,
當(dāng)1.25時,甲、乙相距為0,故在此時相遇,故②正確,
當(dāng)時,易得一次函數(shù)的解析式為,故甲的速度比乙的速度快8.故③正確
當(dāng)時,函數(shù)圖象經(jīng)過點設(shè)一次函數(shù)的解析式為
代入得,解得
∴
當(dāng)時.得,解得
由
同理當(dāng)時,設(shè)函數(shù)解析式為
將點代入得
,解得
∴
當(dāng)時,得,解得
由
故相遇后,乙又騎行了15或65時兩人相距2,④正確.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是關(guān)于的方程的兩實根,實數(shù)、、、的大小關(guān)系可能是( )
A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是ts.過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,為直線上一點,為直線外一點,連結(jié).
(1)用直尺、圓規(guī)在直線上作點,使為等腰三角形(作出所有符合條件的點,保留痕跡).
(2)設(shè),若(1)中符合條件的點只有兩點,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是反比例函數(shù)上第一象限上一個動點,點A、點B為坐標(biāo)軸上的點,A(0,k),B(k,0).已知△OAB的面積為.
(1)求k的值;
(2)連接PA、PB、AB,設(shè)△PAB的面積為S,點P的橫坐標(biāo)為t.請直接寫出S與t的函數(shù)關(guān)系式;
(3)閱讀下面的材料回答問題:
當(dāng)a>0時,
∵≥0,∴≥2,即≥2
由此可知:當(dāng)=0時,即a=1時,取得最小值2.
問題:請你根據(jù)上述材料探索(2)中△PAB的面積S有沒有最小值?若有,請直接寫出S的最小值;若沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,是的直徑,是的切線,切點為.點為射線上一動點(點與不重合),且弦平行于.
求證:是的切線;
設(shè)的半徑為.試問:當(dāng)動點在射線上運動到什么位置時,有?請回答并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點N(0,6),點M在x軸負(fù)半軸上,ON=3OM.A為線段MN上一點,AB⊥x軸,垂足為點B,AC⊥y軸,垂足為點C.
(1)寫出點M的坐標(biāo);
(2)求直線MN的表達(dá)式;
(3)若點A的橫坐標(biāo)為-1,求矩形ABOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.
(1)證明:△BCE≌△CAD;
(2)若AD=15cm,BE=8cm,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,為邊上的兩個點,且,.
(1)若,求的度數(shù);
(2)的度數(shù)會隨著度數(shù)的變化而變化嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com