【題目】矩形的兩條對(duì)稱軸為坐標(biāo)軸,點(diǎn)的坐標(biāo)為.一張透明紙上畫有一個(gè)點(diǎn)和一條拋物線,平移透明紙,使點(diǎn)與點(diǎn)重合,此時(shí)拋物線的函數(shù)表達(dá)式為,再次平移透明紙,使點(diǎn)與點(diǎn)重合,則該拋物線的函數(shù)表達(dá)式變?yōu)?/span>_______.
【答案】
【解析】
先由對(duì)稱計(jì)算出C點(diǎn)的坐標(biāo),再根據(jù)平移規(guī)律求出新拋物線的解析式即可解題.
解:∵矩形ABCD的兩條對(duì)稱軸為坐標(biāo)軸,
∴矩形ABCD關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,
∵A點(diǎn)C點(diǎn)是對(duì)角線上的兩個(gè)點(diǎn),
∴A點(diǎn)、C點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,
∴C點(diǎn)坐標(biāo)為(-2,-1);
∴透明紙由A點(diǎn)平移至C點(diǎn),拋物線向左平移了4個(gè)單位,向下平移了2個(gè)單位;
∵透明紙上點(diǎn)E與點(diǎn)A重合時(shí),函數(shù)表達(dá)式為y=x2,
∴透明紙上點(diǎn)E與點(diǎn)C重合時(shí),函數(shù)表達(dá)式為y=(x+4)2-2=x2+8x+14
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為的斜邊的中點(diǎn),,,以點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)得到,若,當(dāng)時(shí),圖中弧所構(gòu)成的陰影部分面積為().
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D是AB上一點(diǎn),已知AC=10,AC2=AD·AB.
(1)證明△ACD∽△ABC.
(2)如圖2,過點(diǎn)C作CE∥AB,且CE=6,連結(jié)DE交BC于點(diǎn)F;
①若四邊形ADEC是平行四邊形,求的值;
②設(shè)AD=x,=y,求y關(guān)于x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)M是平行四邊形ABCD對(duì)角線AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BM作垂線,垂足分別為點(diǎn)E、F,點(diǎn)O為AC的中點(diǎn).
⑴如圖1,當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),OE與OF的數(shù)量關(guān)系是 .
⑵直線BM繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),且∠OFE=30°.
①如圖2,當(dāng)點(diǎn)M在線段AC上時(shí),猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?請(qǐng)你寫出來并加以證明;
②如圖3,當(dāng)點(diǎn)M在線段AC的延長線上時(shí),請(qǐng)直接寫出線段CF、AE、OE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲樓AB高20米,乙樓CD高10米,兩棟樓之間的水平距離BD=30m,為了測(cè)量某電視塔EF的高度,小明在甲樓樓頂A處觀測(cè)電視塔塔頂E,測(cè)得仰角為37°,小明在乙樓樓頂C處觀測(cè)電視塔塔頂E,測(cè)得仰角為45°,求該電視塔的高度EF.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)落在點(diǎn)處,得到,過點(diǎn)作平行于軸的直線交于點(diǎn),交軸于點(diǎn),直線交于點(diǎn).,.
(1)求經(jīng)過點(diǎn)、的反比例函數(shù)和直線:的解析式;
(2)過點(diǎn)作軸,求五邊形的面積;
(3)直接寫出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長是9,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)是邊上一點(diǎn),,連接,把正方形沿折疊,使點(diǎn),分別落在點(diǎn),處,當(dāng)點(diǎn)落在線段上時(shí),線段的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為BC邊上的一點(diǎn),連接AE,過點(diǎn)D作DM⊥AE,垂足為點(diǎn)M,交AB于點(diǎn)F.將△AMF沿AB翻折得到△ANF.延長DM,AN交于點(diǎn)P. 給出以下結(jié)論①;②;③;④若,則;.其中正確的是( 。
A.①②③④B.①②③C.①②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,、兩點(diǎn)關(guān)于直線對(duì)稱,直線交于點(diǎn),交另一邊于點(diǎn),且,則的長為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com