【題目】已知關(guān)于x的方程x2+(k+3)x+=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若方程兩根為x1,x2,那么是否存在實(shí)數(shù)k,使得等式=﹣1成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.
【答案】(1)k>﹣;(2)6.
【解析】分析:(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于k的一元一次不等式,解之即可得出結(jié)論;(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=﹣k﹣3、x1x2=,將其代入中求出k值,再由(1)的結(jié)論即可確定k值,進(jìn)而求解.
詳解:(1)∵關(guān)于x的方程x2+(k+3)x+=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(k+3)2﹣4×1×=6k+9>0,
解得:k>﹣.
(2)∵方程x2+(k+3)x+=0的兩根為x1、x2,
∴x1+x2=﹣k﹣3,x1x2=.
∵=﹣1,即=﹣1,
∴k2﹣4k﹣12=0,
解得:k1=﹣2,k2=6.
∵k>﹣,
∴k=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=∠ACB,把這個(gè)三角形折疊,使得點(diǎn)B與點(diǎn)A重合,折痕分別交直線AB,AC于點(diǎn)M,N,若∠ANM=50°,則∠B的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4,面積為12,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F.若D為BC邊的中點(diǎn),M為線段EF上一個(gè)動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AC,BC分別與⊙O相交于D.
(1)在圖中作出△ABC的邊AB上的高CH.(要求:①僅用無(wú)刻度真尺,且不能用直尺中的直角;②保留必要的作圖痕跡)
(2)連接DE,若,則∠C的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論:①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,12),B(-5,0),連接AB.將△AOB沿過點(diǎn)B的直線折疊,使點(diǎn)A落在x軸上的點(diǎn)處,折痕所在的直線交y軸正半軸于點(diǎn)C,則點(diǎn)C的坐標(biāo)為___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(1,1)、B(3,5),要在坐標(biāo)軸上找一點(diǎn),使得△PAB的周長(zhǎng)最小,則點(diǎn)的坐標(biāo)為( )
A.B.C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架梯子AB長(zhǎng)13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.垂美四邊形有如下性質(zhì):
垂美四邊形的兩組對(duì)邊的平方和相等.
已知:如圖1,四邊形ABCD是垂美四邊形,對(duì)角線AC、BD相交于點(diǎn)E.
求證:AD2+BC2=AB2+CD2
證明:∵四邊形ABCD是垂美四邊形
∴AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2.
拓展探究:
(1)如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)如圖3,在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;
問題解決:
如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.求GE長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com