已知等邊△ABC和⊙M.
(1)如圖l,若⊙M與BA的延長線AK及邊AC均相切,求證: AM∥BC;
(2)如圖2,若⊙M與BA的延長線AK、BC的延長線CF及邊AC均相切,求證:四邊形ABCM是平行四邊形.
證明見解析
【解析】證明:(1)連接AM,
∵△ABC是等邊三角形,∴∠B=∠BAC=60°。
∴∠KAC=180°﹣∠BAC=120°。
∵⊙M與BA的延長線AK及邊AC均相切,
∴∠KAM=∠CAM=∠KAC=×120°=60°。
∴∠KAM=∠B=60°。∴AM∥BC。
(2)∵△ABC是等邊三角形,∴∠B=∠BAC=∠ACB=60°。
∴∠KAC=180°﹣∠BAC=120°,∠FCA=120°。
∵⊙M與BA的延長線AK、BC的延長線CF及邊AC均相切,
∴∠KAM=∠CAM=∠KAC=×120°=60°,
∠FCM=∠ACM=∠FCA=×120°=60°。
∴∠KAM=∠B=60°,∠FCM=∠B=60°。
∴AM∥BC,CM∥AB,∴四邊形ABCM是平行四邊形。
(1)由等邊△ABC,即可得∠B=∠BAC=60°,求得∠KAC=120°,又由⊙M與BA的延長線AK及邊AC均相切,利用切線長定理,即可得∠KAM=60°,然后根據(jù)同位角相等,兩直線平行,證得AM∥BC。
(2)根據(jù)(1),易證得AM∥BC,CM∥AB,從而可證得四邊形ABCM是平行四邊形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com