如圖,已知AB=4,BC=3,AD=12,DC=13,∠B=90°,則四邊形ABCD的面積為_(kāi)_______.

36
分析:連接AC,先根據(jù)直角三角形的性質(zhì)得到AC邊的長(zhǎng)度,再根據(jù)三角形ACD中的三邊關(guān)系可判定△ACD是Rt△,把四邊形分成兩個(gè)直角三角形即可求得面積.
解答:解:連接AC,
∵∠B=90°
∴AC2=AB2+BC2=16+9=25
∵AD2=144,DC2=169
∴AC2+AD2=DC2
∴CA⊥AD
∴S四ABCD=S△ABC+S△ACD=34+×125=36.
點(diǎn)評(píng):主要考查了利用勾股定理的逆定理判定直角三角形的方法.本題還要注意通過(guò)作輔助線的方法把不規(guī)則的四邊形分割成三角形是常用的解題方法,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,已知AB=AC,∠1=∠2,∠3=∠F,試判斷EC與DF是否平行,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、(保留作圖痕跡)如圖,已知AB=DC.
(1)畫(huà)出線段AB平移后的線段DE,其平移方向?yàn)樯渚AD的方向,平移的距離為線段AD的長(zhǎng);
(2)連接CE,并指出∠DEC與∠DCE之間的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB=4,BC=12,CD=13,DA=3,AB⊥AD.判斷BC⊥BD嗎?簡(jiǎn)述你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知AB∥DE,點(diǎn)C是AE的中點(diǎn),
求證:△ABC≌△EDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB、CD交于點(diǎn)O,且點(diǎn)O是AB的中點(diǎn),AC∥BD,請(qǐng)說(shuō)明點(diǎn)O是CD的中點(diǎn)的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案