【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,M是邊AC的中點,CH⊥BM于H.
(1)求證:;
(2)連結(jié)AH,求∠AHM的度數(shù).
【答案】(1)見解析;(2)45°.
【解析】
(1)由已知條件證明∠MHC=∠MCB=90°,結(jié)合∠CMH=∠BMC證得△MCH∽△MBC即可得到,由此即可得到CM2=HM·BM;
(2)由△MCH∽△MBC可得,結(jié)合CM=AM可得,這樣結(jié)合∠AMH=∠BMA即可證得△AMH∽△BMA,由此可得∠AHM=∠BAM=45°.
(1) ∵CH⊥BM,∠ACB=90°
∴∠MHC=∠MCB =90°.
又∵∠CMH=∠BMC,
∴△MCH∽△MBC
∴,
∴CM2=HM·BM;
(2)∵在△ABC中,∠ACB=90°,AC=BC,
∴∠BAM=45°.
∵M是邊AC的中點,
∴CM=AM,
∵由(1) 所得△MCH∽△MBC可得:,
∴,
又∵∠AMH=∠BMA,
∴△AMH∽△BMA,
∴∠AHM=∠BAM=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】環(huán)境空氣質(zhì)量問題已經(jīng)成為人們?nèi)粘I钏P(guān)心的重要問題,我國新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》中增加了PM2.5檢測指標(biāo),“PM2.5”是指大氣中危害健康的直徑小于或等于2.5微米的顆粒物,2.5微米即0.0000025米.用科學(xué)記數(shù)法表示0.0000025為( )
A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明發(fā)現(xiàn)相機(jī)快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.
優(yōu)惠 條件 | 一次性購物不超過200元 | 一次性購物超過200元,但不超過500元 | 一次性購物超過500元 |
優(yōu)惠 辦法 | 沒有優(yōu)惠 | 全部按九折優(yōu)惠 | 其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠 |
小欣媽媽兩次購物分別用了134元和490元.
(1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?
(2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一圓弧過方格的格點A,B,C,在方格中建立平面直角坐標(biāo)系,使點A的坐標(biāo)為(-2,4).
(1) 用直尺畫出該圓弧所在圓的圓心M的位置,并寫出點M的坐標(biāo);
(2)判斷點D與⊙M的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,BA=BC,AO⊥BC于點O,AO=3CO=6.F是AB邊上的一個動點,過F作FE∥BC交AC邊于點E,交AO于點G,連結(jié)FO,EO,設(shè)EF長為x,△EFO的面積為S.
(1)求OB的長;
(2)求S關(guān)于x的函數(shù)表達(dá)式和x的取值范圍;
(3)判斷:當(dāng)△EFO的面積最大時,△EFO和△CBA是否相似并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個長為2m,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形
如圖中的陰影部分的正方形的邊長等于______用含m、n的代數(shù)式表示;
請用兩種不同的方法列代數(shù)式表示圖中陰影部分的面積:
方法:______;
方法:______;
觀察圖,試寫出、、mn這三個代數(shù)式之間的等量關(guān)系:______;
根據(jù)題中的等量關(guān)系,若,,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A(-2,1),B(-4,-2),C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應(yīng)點C′的坐標(biāo)為(4,1)
(1)A′、B′兩點的坐標(biāo)分別為A′______,B′______;
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.
(1)求甲選擇A部電影的概率;
(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com