已知點P(2,-4)在拋物線y=mx2-3x-m+1上,那么這條拋物線的開口方向是
 
分析:根據(jù)二次函數(shù)圖象上點的坐標特征,將點P代入拋物線方程,然后解關于m的方程,求得m的值,從而可以確定拋物線方程的二次項系數(shù),即可以判斷這條拋物線的開口方向.
解答:解:∵點P(2,-4)在拋物線y=mx2-3x-m+1上,
∴點P(2,-4)滿足拋物線方程y=mx2-3x-m+1,
∴-4=4m-6-m+1,
解得m=
1
3

∴拋物線方程y=mx2-3x-m+1的二次項系數(shù)m=
1
3
>0,
∴這條拋物線的開口方向向上.
故答案是:向上.
點評:本題考查了二次函數(shù)圖象上點的坐標特征.經過圖象上的某點時,該點一定滿足該函數(shù)的關系式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、已知點A(m,2m)和點B(3,m2-3),直線AB平行于x軸,則m等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,已知點A,B,C在⊙O上,AC∥OB,∠BOC=40°,則∠ABO=
20
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知點A1,A2,A3是拋物線y=
1
2
x2上的三點,線段A1B1,A2B2,A3B3都垂直于x軸,垂足分別為點B1,B2,B3,延長線段B2A2交線段A1A3于點C.
(1)在圖(1)中,若點A1,A2,A3的橫坐標依次為1,2,3,求線段CA2的長;
(2)若將拋物線改為y=
1
2
x2-x+1,如圖2,點A1,A精英家教網(wǎng)2,A3的橫坐標依次為三個連續(xù)整數(shù),其他條件不變,求線段CA2的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、對于點O、M,點M沿MO的方向運動到O左轉彎繼續(xù)運動到N,使OM=ON,且OM⊥ON,這一過程稱為M點關于O點完成一次“左轉彎運動”.正方形ABCD和點P,P點關于A左轉彎運動到P1,P1關于B左轉彎運動到P2,P2關于C左轉彎運動到P3,P3關于D左轉彎運動到P4,P4關于A左轉彎運動到P5,….
(1)請你在圖中用直尺和圓規(guī)在圖中確定點P1的位置;
(2)連接P1A、P1B,判斷△ABP1與△ADP之間有怎樣的關系?并說明理由.
(3)以D為原點、直線AD為y軸建立直角坐標系,并且已知點B在第二象限,A、P兩點的坐標為(0,4)、(1,1),請你推斷:P4、P2009、P2010三點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知點A(0,2)、B(4,0),點C、D分別在直線x=1與x=2上,且CD∥x軸,則AC+CD+DB的最小值為
 

查看答案和解析>>

同步練習冊答案