精英家教網 > 初中數學 > 題目詳情
(2012•襄陽)如圖,直線l∥m,將含有45°角的三角板ABC的直角頂點C放在直線m上,若∠1=25°,則∠2的度數為(  )
分析:首先過點B作BD∥l,由直線l∥m,可得BD∥l∥m,由兩直線平行,內錯角相等,即可求得答案∠4的度數,又由△ABC是含有45°角的三角板,即可求得∠3的度數,繼而求得∠2的度數.
解答:解:過點B作BD∥l,
∵直線l∥m,
∴BD∥l∥m,
∴∠4=∠1=25°,
∵∠ABC=45°,
∴∠3=∠ABC-∠4=45°-25°=20°,
∴∠2=∠3=20°.
故選A.
點評:此題考查了平行線的性質.此題難度不大,注意輔助線的作法,注意掌握兩直線平行,內錯角相等定理的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉,使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄陽)如圖,從一個直徑為4
3
dm的圓形鐵皮中剪出一個圓心角為60°的扇形ABC,并將剪下來的扇形圍成一個圓錐,則圓錐的底面半徑為
1
1
dm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄陽)如圖,在梯形ABCD中,AD∥BC,E為BC的中點,BC=2AD,EA=ED=2,AC與ED相交于點F.
(1)求證:梯形ABCD是等腰梯形;
(2)當AB與AC具有什么位置關系時,四邊形AECD是菱形?請說明理由,并求出此時菱形AECD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄陽)如圖,ABCD是正方形,G是BC上(除端點外)的任意一點,DE⊥AG于點E,BF∥DE,交AG于點F.下列結論不一定成立的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•襄陽)如圖,直線y=k1x+b與雙曲線y=
k2
x
相交于A(1,2)、B(m,-1)兩點.
(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關系式;
(3)觀察圖象,請直接寫出不等式k1x+b>
k2
x
的解集.

查看答案和解析>>

同步練習冊答案