【題目】如圖甲,已知在⊙O中,AB=,AC是⊙O的直徑,AC⊥BD于F,∠A=30度.
(1)連接BC,CD,請你判定四邊形OBCD是何種特殊的四邊形?試說明理由;
(2)若用扇形OBD圍成一個(gè)圓錐側(cè)面,請求出這個(gè)圓錐的底面圓的半徑;
(3)如圖乙,若將“∠A=30°”改為“∠A=22.5°”,其余條件不變,以半徑OB、OD的中點(diǎn)M、N為頂點(diǎn)作矩形MNGH,頂點(diǎn)G、H在⊙O的劣弧上,GH交OC于點(diǎn)E.試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)四邊形OBCD是菱形,證明見解析;(2);(3);
【解析】
(1)根據(jù)對角線互相垂直的平行四邊形是菱形進(jìn)行證明,由AC⊥BD,根據(jù)垂徑定理可知:BF=FD,故只需證明OF=CF.在Rt△ABF中,已知∠A和AB,可將BF,AF的長求出;在Rt△BOF中,運(yùn)用勾股定理可將半徑OB及OF求出,根據(jù)CF=2OB-AF可將CF求出,根據(jù)OF=CF,BF=FD,BD⊥OC,可證四邊形OBCD為菱形;
(2)已知扇形BOD的圓心角和半徑,代入l弧長=進(jìn)行求解,再根據(jù)底面周長:2πr=l弧長,可求出圓錐底面的半徑;
(3)作輔助線,連接OH,S陰影=S扇形OBD-S△BOD-S下矩形,S扇形=lR,S△BOD=OB2,代入數(shù)據(jù)可將扇形AOB和△BOD的面積求出,由M、N是△OBD的中位線,可知MN=BD,在Rt△OEH中,根據(jù)勾股定理可求出OE,又OF=OB,可得EF=OE-OF,故:S下矩形=MN×EF,從而可將陰影部分的面積求出.
解:(1)四邊形OBCD是菱形.
如圖丙,∵AC⊥BD,AC是直徑,
∴AC垂直平分BD.
∴BF=FD, .
∴∠BAD=2∠BAC=60°,
∴∠BOD=120°.
∵BF=AB=2,
在Rt△ABF中,
AF=,
在Rt△BOF中,
∴OB2=BF2+OF2.即 .
解得:OB=4.
∵OA=OB=4,
∴OF=AF﹣AO=6﹣4=2,
∵AC=2OA=8,
∴CF=AC﹣AF=8﹣6=2,
∴CF=OF,
∵BF=FD,AC⊥BD,
∴四邊形OBCD是菱形;
(2)設(shè)圓錐的底面圓的半徑為r,則周長為2πr.
∵扇形OBD的弧長=,
∴,
解得:r=;
(3)如圖丁,連接OH.
∵∠A=22.5°,
∴∠BOC=45°,
∵∠BOD=∠BOC=90°
設(shè)半徑OB=r,由勾股定理則有
化簡得r2=24(2﹣)
∵M、N是OB、OD的中點(diǎn),
∵四邊形MNGH是矩形,
∴MN2=GH2=12(2﹣),EH2=EG2= MN2=3(2﹣).
在Rt△HOE中,OE2=OH2﹣HE2,即OE2=r2﹣3(2﹣),
解得:OE2=21(2﹣),
∴下矩形的面積=(OE﹣OF)×MN= ,
∵扇形OBD的面積=,
∴圖中陰影部分的面積=-
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)是線段的中點(diǎn),,.
(1)如圖1,若,求證是等邊三角形;
(2)如圖1,在(1)的條件下,若點(diǎn)在射線上,點(diǎn)在點(diǎn)右側(cè),且是等邊三角形,的延長線交直線于點(diǎn),求的長度;
(3)如圖2,在(1)的條件下,若點(diǎn)在線段上,是等邊三角形,且點(diǎn)沿著線段從點(diǎn)運(yùn)動(dòng)到點(diǎn),點(diǎn)隨之運(yùn)動(dòng),求點(diǎn)的運(yùn)動(dòng)路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠B=70°,求弧CD的度數(shù);
(2)若AB=26,DE=8,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙中每個(gè)小正方形的邊長為1,一段圓弧經(jīng)過格點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn).
(1)該圖中弧所在圓的圓心D的坐標(biāo)為 ;.
(2)根據(jù)(1)中的條件填空:
①圓D的半徑= (結(jié)果保留根號);
②點(diǎn)(7,0)在圓D (填“上”、“內(nèi)”或“外”);
③∠ADC的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市甲、乙兩個(gè)汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
請你根據(jù)上圖填寫下表:
銷售公司 | 平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) |
甲 | 9 | |||
乙 | 9 | 8 |
請你從以下兩個(gè)不同的方面對甲、乙兩個(gè)汽車銷售公司去年一至十月份的銷售情況進(jìn)行分析:
從平均數(shù)和方差結(jié)合看;
從折線圖上甲、乙兩個(gè)汽車銷售公司銷售數(shù)量的趨勢看分析哪個(gè)汽車銷售公司較有潛力.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com