(2005•常德)如圖是一塊手表,早上8時的時針、分針的位置如圖所示,那么分針與時針所成的角的度數(shù)是( )

A.60°
B.80°
C.120°
D.150°
【答案】分析:早上8時,時針指向8,分針指向12.鐘表12個數(shù)字,每相鄰兩個數(shù)字之間的夾角為30°.分針與時針之間有四個格,可求解.
解答:解:根據(jù)圖形,8點整分針與時針的夾角正好是(12-8)×30°=120度.
故選C.
點評:本題考查鐘表時針與分針的夾角.在鐘表問題中,常利用時針與分針轉(zhuǎn)動的度數(shù)關(guān)系:分針每轉(zhuǎn)動1°時針轉(zhuǎn)動()°,并且利用起點時間時針和分針的位置關(guān)系建立角的圖形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(16)(解析版) 題型:解答題

(2005•常德)如圖,⊙O1與⊙O2外切于點P,外公切線AB切⊙O1于點A,切⊙O2于點B,
(1)求證:AP⊥BP;
(2)若⊙O1與⊙O2的半徑分別為r和R,求證:
(3)延長AP交⊙O2于C,連接BC,若r:R=2:3,求tan∠C的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(14)(解析版) 題型:解答題

(2005•常德)如圖,AB是⊙O的直徑,BC是⊙O的弦,⊙O的割線PDE垂直AB于點F,交BC于點G,連接PC,∠BAC=∠BCP,求解下列問題:
(1)求證:CP是⊙O的切線.
(2)當∠ABC=30°,BG=,CG=時,求以PD、PE的長為兩根的一元二次方程.
(3)若(1)的條件不變,當點C在劣弧AD上運動時,應再具備什么條件可使結(jié)論BG2=BF•BO成立?試寫出你的猜想,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖南省常德市中考數(shù)學試卷(解析版) 題型:選擇題

(2005•常德)如圖,DE是△ABC的中位線,則△ADE與△ABC的面積之比是( )

A.1:1
B.1:2
C.1:3
D.1:4

查看答案和解析>>

科目:初中數(shù)學 來源:2003年湖南省婁底市中考數(shù)學試卷(解析版) 題型:解答題

(2005•常德)如圖,AB是⊙O的直徑,BC是⊙O的弦,⊙O的割線PDE垂直AB于點F,交BC于點G,連接PC,∠BAC=∠BCP,求解下列問題:
(1)求證:CP是⊙O的切線.
(2)當∠ABC=30°,BG=,CG=時,求以PD、PE的長為兩根的一元二次方程.
(3)若(1)的條件不變,當點C在劣弧AD上運動時,應再具備什么條件可使結(jié)論BG2=BF•BO成立?試寫出你的猜想,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年北京市海淀區(qū)中考數(shù)學試卷 題型:選擇題

(2005•常德)如圖,DE是△ABC的中位線,則△ADE與△ABC的面積之比是( )

查看答案和解析>>

同步練習冊答案