【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),B(8,0),C(8,6)三點(diǎn).
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點(diǎn)的坐標(biāo);
(2)求出△ABC的面積;
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得到△A'B'C',在圖中畫出△ABC變化位置,并寫出A'、B'、C'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn)A,C的坐標(biāo)分別為(, ),(, ).
(1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi),作出平面直角坐標(biāo)系;
(2)請作出關(guān)于軸對稱的;
(3)寫出點(diǎn)的坐標(biāo)為___ __;
(4)△ABC的面積為__ _ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )個(gè)
①1乘以任何有理數(shù)都等于這個(gè)數(shù)本身:②0乘以任何數(shù)的積均為0:③-1乘以任何有理數(shù)都等于這個(gè)有理數(shù)的相反數(shù);④一個(gè)數(shù)的倒數(shù)與本身相等的數(shù)只有1
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AOB是一條直線,OC是∠AOD的平分線,OE 是∠BOD的平分線.
(1)若∠AOE=140°,求∠AOC的度數(shù);
(2)若∠EOD :∠COD=2 : 3,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)A(2,0)的兩條直線l1,l2分別交y軸于點(diǎn)B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB= .
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求直線l2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.下列三個(gè)條件:①AB∥CD,②∠B=∠C.③∠E=∠F.從中任選兩個(gè)作為條件,另一個(gè)作為結(jié)論,編一道數(shù)學(xué)題,并說明理由.
已知:________;
結(jié)論:________;
理由:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【再現(xiàn)】如圖①,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),可以得到:DE∥BC,且DE=BC.(不需要證明)
【探究】如圖②,在四邊形ABCD中,點(diǎn)E,F,G,H分別是AB,BC,CD,DA的中點(diǎn),判斷四邊形EFGH的形狀,并加以證明.
【應(yīng)用】在(1)【探究】的條件下,四邊形ABCD中,滿足什么條件時(shí),四邊形EFGH是菱形?你添加的條件是: .(只添加一個(gè)條件)
(2)如圖③,在四邊形ABCD中,點(diǎn)E,F,G,H分別是AB,BC,CD,DA的中點(diǎn),對角線AC,BD相交于點(diǎn)O.若AO=OC,四邊形ABCD面積為5,則陰影部分圖形的面積和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com