【題目】請你閱讀下列解題過程,并回答所提出的問題.

計算:

解:原式=     、

x33(x1) ③

=-2x6

(1)上述計算過程中,從哪一步開始出現(xiàn)錯誤______;

(2)從②到③是否正確?__________,若不正確,錯誤的原因是______________;

(3)請你給出正確答案__________.

【答案】(1) ①;(2) 不正確,把分母去掉了;(3).

【解析】

1)觀察第一步變形,可知第二項的分母從(1-x)變?yōu)椋?/span>x-1),即改變了符號,想一想前面的符號是否需要改變,據(jù)此判斷是否正確;

2)對于(2),根據(jù)同分母分式相加減,分母不變,分子相加減進行判斷即可;

3)對于(3),根據(jù)異分母分式的加減運算法則寫出正確的化簡過程即可.

1)計算過程是從第①步開始出現(xiàn)錯誤的.

2)從②到③不正確,同分母分式相加減,分母不變,分子相加減,因此分母不能去掉.

3)正確計算過程如下:

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】從2開始的連續(xù)偶數(shù)相加,它們和的情況如下表:

加數(shù)的個數(shù)(n

S

1

2=1×2

2

2+4=6=2×3

3

2+4+6=12=3×4

4

2+4+6+8=20=4×5

5

2+4+6+8+10=30=5×6

(1)根據(jù)表中的規(guī)律,直接寫出2+4+6+8+10+12+14=________

(2)根據(jù)表中的規(guī)律猜想:S=2+4+6+8+…+2n=___________(用n的代數(shù)式表示);

(3)利用上題中的公式計算102+104+106+…+200的值(要求寫出計算過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,老師出示了如下的題目:在等邊△ABC中,點EAB上,點DCB的延長線上,且EDEC,如圖1,試確定線段AEDB的大小關(guān)系,并說明理由.小敏與同桌小聰討論后,進行了如下解答:

1)特殊情況,探索結(jié)論:當點EAB的中點時,如圖1,確定線段AEDB的大小關(guān)系,請你直接寫出結(jié)論:AE  DB(填“≥”,“≤”

2)特例啟發(fā),解答題目

解:題目中,AEDB的大小關(guān)系是:AE   DB(填“≥”,“≤”).理由如下:如圖3,過點EEFBC,交AC于點F.(請你完成解答過程)

3)拓展結(jié)論,設(shè)計新題.

已知O是等邊三角形ABD的邊BD的中點,AB=4,EF分別為射線ABDA上一動點,且∠EOF=120°,若AF=1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠4,∠5=∠6,試判斷ED與FB的位置關(guān)系,并說明為什么.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EF分別為AB,AD上的點,且AE=AF,點MEF的中點,連結(jié)CM.

1)求證:CMEF.

2)設(shè)正方形ABCD的邊長為2,若五邊形BCDEF的面積為,請直接寫出CM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,DEAB,垂足為點E,連接CE.若AE2,∠DCE30°,則菱形的邊長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校要從小紅、小明和小亮三名同學中挑選一名同學參加數(shù)學素養(yǎng)大賽,在最近的四次專題測試中,他們?nèi)说某煽內(nèi)缦卤硭荆?/span>

學生

專題

集合證明

PISA問題

應(yīng)用題

動點問題

小紅

70

75

80

85

小明

80

80

72

76

小亮

75

75

90

65

1)請算出小紅的平均分為多少?

2)該校根據(jù)四次專題考試成績的重要程度不同而賦予每個專題成績一個權(quán)重,權(quán)重比依次為x121,最后得出三人的成績(加權(quán)平均數(shù)),若從高分到低分排序為小亮、小明、小紅,求正整數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).

2)若∠A=m,∠B=n,求∠DCE.(用mn表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案