【題目】已知拋物線yx25x+4x軸交于點A,B,與y軸交于點C,頂點為點P

1)求△ABP的面積;

2)在該拋物線上是否存在點Q,使SABQ8SABP?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

【答案】1SABP;(2)存在,Q1718Q2(﹣2,18).

【解析】

1)令y0,求出x的值即可得出AB兩點的坐標(biāo);再令x0,求出y的值可得出C點坐標(biāo);利用拋物線的頂點坐標(biāo)公式即可得出P點的坐標(biāo),進(jìn)而可求出△ABP的面積;

2)該拋物線上存在點Q,使SABQ8SABP,若確定Q點的縱坐標(biāo),代入拋物線解析式求出橫坐標(biāo)即可.

解:(1)∵拋物線yx25x+4中,令y0,則x25x+40,即(x4)(x1)=0,

解得x4,x1;

A1,0),B4,0);

x0,得y4,

C0,4).

∵點P是拋物線的頂點,拋物線化為頂點式為,如圖:

P),

AB3,

SABP×3×;

2)存在,理由如下:

因為SABQ8SABP,所以hABQ8hABP18,

所以令y18,則x25x+418,

解得x17,x2=﹣2,

所以Q1718);Q2(﹣2,18).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】. 在一個不透明的布袋中裝有三個小球,小球上分別標(biāo)有數(shù)字﹣10、2,它們除了數(shù)字不同外,其他都完全相同.

1)隨機地從布袋中摸出一個小球,則摸出的球為標(biāo)有數(shù)字2的小球的概率為 ;

2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點M的縱坐標(biāo),請用樹狀圖或表格列出點M所有可能的坐標(biāo),并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點P,且y的值隨x值的增大而增大,則點P的坐標(biāo)可以為( �。�

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

x

2

1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中正確的是( �。�

A. 拋物線與x軸的一個交點為(40

B. 函數(shù)yax2+bx+c的最大值為6

C. 拋物線的對稱軸是x

D. 在對稱軸右側(cè),yx增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.

1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為 3 的正方形中, 在射線上, ,連接交射線于點,若沿直線翻折, 落在點

1)如圖1,若點在線段上,求的長;

2)求的值;

3)如果題設(shè)中改為 其它條件都不變, 試寫出翻折后與正方形公共部分的面積的關(guān)系式及自變量的取值范圍(只要寫出結(jié)論,不需寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=12,BC=8,AC=6,點DE分別在AB、AC上,如果以A、D、E為頂點的三角形和以A、BC為頂點的三角形相似,且相似比為

1)根據(jù)題意確定D、E的位置,畫出簡圖;

2)求AD、AEDE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓心O到直線l的距離為d,的半徑為R,若d,R是方程的兩個根,則直線和圓的位置關(guān)系是________;若d,R是方程的兩個根,則________時,直線與圓相切.

查看答案和解析>>

同步練習(xí)冊答案
閸忥拷 闂傦拷