【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0,現(xiàn)同時將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.
【答案】(1)18;(2)M(0,2)或(0,﹣2);(3)①當點P在線段BD上移動時,∠APO=∠DOP+∠BAP;②當點P在DB的延長線上時,∠DOP=∠BAP+∠APO;③當點P在BD的延長線上時,∠BAP=∠DOP+∠APO.
【解析】
(1)根據(jù)非負數(shù)的性質(zhì)分別求出a、b,根據(jù)平移規(guī)律得到點C,D的坐標,根據(jù)坐標與圖形的性質(zhì)求出S四邊形ABCD;
(2)設M坐標為(0,m),根據(jù)三角形的面積公式列出方程,解方程求出m,得到點M的坐標;
(3)分點P在線段BD上、點P在DB的延長線上、點P在BD的延長線上三種情況,根據(jù)平行線的性質(zhì)解答.
解:(1)∵(a﹣3)2+|b﹣6|=0,
∴a﹣3=0,b﹣6=0,
,解得,a=3,b=6.
∴A(0,3),B(6,3),
∵將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應點C,D,
∴C(﹣2,0),D(4,0),
∴S四邊形ABDC=AB×OA=6×3=18;
(2)在y軸上存在一點M,使S△MCD=S四邊形ABCD,
設M坐標為(0,m).
∵S△MCD=S四邊形ABDC,
∴×6|m|=×18,
解得m=±2,
∴M(0,2)或(0,﹣2);
(3)①當點P在線段BD上移動時,∠APO=∠DOP+∠BAP,
理由如下:如圖1,過點P作PE∥AB,
∵CD由AB平移得到,則CD∥AB,
∴PE∥CD,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠DOP=∠APE+∠OPE=∠APO;
②當點P在DB的延長線上時,同①的方法得,
∠DOP=∠BAP+∠APO;
③當點P在BD的延長線上時,同①的方法得,
∠BAP=∠DOP+∠APO.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我把對角線互相垂直的四邊形叫做“垂美四邊形”.
(1)性質(zhì)探究:如圖1.已知四邊形ABCD中,AC⊥BD,垂足為O,求證:AB2+CD2=AD2+BC2.
(2)解決問題:已知AB=5,BC=4,分別以△ABC的邊BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如圖2,當∠ACB=90°,連接PQ,求PQ;
②如圖3,當∠ACB≠90°,點M、N分別是AC、AP中點連接MN.若MN=,則S△ABC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是人字型金屬屋架的示意圖,該屋架由BC、AC、BA、AD四段金屬材料焊接而成,其中A、B、C、D四點均為焊接點,且AB=AC,D為BC的中點,假設焊接所需的四段金屬材料已截好,并已標出BC段的中點D,那么,如果焊接工身邊只有可檢驗直角的角尺,而又為了準確快速地焊接,他應該首先選取的兩段金屬材料及焊接點是( 。
A.AB和AD,點AB.AB和AC,點B
C.AC和BC, 點CD.AD和BC,點D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y = x2 - 4x + 3.
(1)用配方法將y = x2 - 4x + 3化成y = a(x - h)2 + k的形式;
(2)在平面直角坐標系中畫出該函數(shù)的圖象;
(3)當0≤x≤3時,y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,垂足為E,連接DF,則∠CDF等于()
A.50°B.60°C.70°D.80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小巖打算購買氣球裝扮學!爱厴I(yè)典禮”活動會場,氣球的種類有笑臉和愛心兩種,兩種氣球的價格不同,但同一種氣球的價格相同.由于會場布置需要,購買時以一束(4個氣球)為單位,已知第一、二束氣球的價格如圖所示,則第三束氣球的價格為______元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,點為邊中點,點為邊中點;點, 為邊三等分點, , 為邊三等分點.小瑞分別用不同的方式連接矩形對邊上的點,如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?
(1)小瑞的探究過程如下
在圖2中,小瑞發(fā)現(xiàn), ;
在圖3中,小瑞對四邊形面積的探究如下. 請你將小瑞的思路填寫完整:
設,
∵
∴,且相似比為,得到
∵
∴,且相似比為,得到
又∵,
∴
∴, ,
∴,則(填寫“”,“”或“”)
(2)小瑞又按照圖4的方式連接矩形對邊上的點.則.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,AB表示A點和B點之間的距離,C是AB的中點,且a、b滿足|a+3|+(b+3a)2=0.
(1)求點C表示的數(shù);
(2)點P從A點以3個單位每秒向右運動,點Q同時從B點以2個單位每秒向左運動,若AP+BQ=2PQ,求時間t;
(3)若點P從A向右運動,點M為AP中點,在P點到達點B之前:①的值不變;②2BM﹣BP的值不變,其中只有一個正確,請你找出正確的結(jié)論并求出其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com