(2012•本溪)某商店購進甲、乙兩種型號的滑板車,共花費13000元,所購進甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍.現(xiàn)已知甲型車每輛進價200元,乙型車每輛進價400元,設商店購進乙型車x輛.
(1)商店有哪幾種購車方案?
(2)若商店將購進的甲、乙兩種型號的滑板車全部售出,并且銷售甲型車每輛獲得利潤70元,銷售乙型車每輛獲得利潤50元,寫出此商店銷售這兩種滑板車所獲得的總利潤y(元)與購進乙型車的輛數(shù)x(輛)之間的函數(shù)關系式?并求出商店購進乙型車多少輛時所獲得的利潤最大?
分析:(1)設商店購進乙型車x輛.則甲型是:
13000-400x
200
輛.根據(jù)所購進甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍,即可得到關于x的不等式組,從而求得x的范圍,然后根據(jù)甲、乙的輛數(shù)都是正整數(shù),即可確定x的值,從而確定方案;
(2)根據(jù)總獲利=甲型的獲利+乙型的獲利,即可得到函數(shù)解析式,然后利用函數(shù)的性質即可確定商店購進乙型車多少輛時所獲得的利潤最大.
解答:解:(1)設商店購進乙型車x輛.則甲型是:
13000-400x
200
輛.
根據(jù)題意得:
13000-400x
200
≥2x
13000-400x
200
≤3x
,
解得:13≤x≤
65
4

∵x是正整數(shù),
13000-400x
200
是正整數(shù).
∴x=13或14或15或16.
則有4種方案:方案一:乙13輛,甲39輛;
方案二:乙14輛,甲37輛;
方案三:乙15輛,甲35輛;
方案四:乙16輛,甲33輛.

(2)y=70×
13000-400x
200
+50x,
即y=-90x+4550.
∵-90<0,則y隨x的增大而減小,
∴當x=13時,y最大.
答:當乙型車購進13輛時所獲得的利潤最大.
點評:本題考查了一次函數(shù)的應用,一元一次不等式組的應用.解決本題的關鍵是讀懂題意,找到所求量的等量關系,及符合題意的不等關系式.要會利用函數(shù)的單調性結合自變量的取值范圍求得利潤的最大值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•本溪二模)如圖,在某海域內有三個港口A、C、D.港口C在港口A北偏東60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小時25海里的速度沿北偏東30°的方向駛離A港口3小時后到達B點位置處,此時發(fā)現(xiàn)船艙漏水,同時在B處測得港口C在B處的南偏東75°方向上.若此船在B處向最近的港口停靠,應向A、C、D三個港口中的哪個港口?浚坎⒄f明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•本溪二模)某工廠用如圖所示的長方形和正方形紙板,做成如圖乙所示的豎式與橫式兩種長方體形狀的無蓋紙盒.
(1)現(xiàn)有正方形紙板162張,長方形紙板340張,若要做兩種紙盒共100個,設做豎式紙盒x個.
①根據(jù)題意,完成以下表格:
      紙盒
紙板
豎式紙盒(個) 橫式紙盒(個)
x 100-x
正方形紙板(張)
x
x
2(100-x)
長方形紙板(張) 4x
3(100-x)
3(100-x)
②按兩種紙盒的生產(chǎn)個數(shù)來分,有哪幾種生產(chǎn)方案?
(2)若每個豎式紙盒獲利2元,橫式紙盒獲利3元,求上述哪種方案銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•本溪)某中學為了更好地活躍校園文化生活,擬對本校自辦的“輝煌”校報進行改版.先從全校學生中隨機抽取一部分學生進行了一次問卷調查,題目為“你最喜愛校報的哪一個板塊”(每人只限選一項).問卷收集整理后繪制了不完整的頻數(shù)分布表和如圖扇形統(tǒng)計圖.
板塊名稱 頻數(shù)(人) 頻率
科技創(chuàng)新 66 0.165
美文佳作 70 0.175
校園新聞 72 0.18
自然探索 a 0.16
體壇縱橫 84 b
其它 44 0.11
合計
(1)填空:頻數(shù)分布表中a=
64
64
,b=
0.21
0.21
;
(2)“自然探索”板塊在扇形統(tǒng)計圖中所占的圓心角的度數(shù)為
57.6°
57.6°
;
(3)在參加此次問卷調查的學生中,最喜愛哪一個板塊的人數(shù)最多?有多少人喜歡?
(4)若全校有1500人,估計喜歡“校園新聞”板塊的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•本溪)某工廠生產(chǎn)某品牌的護眼燈,并將護眼燈按質量分成15個等級(等級越高,燈的質量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護眼燈,一級產(chǎn)品每臺可獲利潤21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表所示:
等級(x級) 一級 二級 三級
生產(chǎn)量(y臺/天) 78 76 74
(1)已知護眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出y與x之間的函數(shù)關系式:
y=-2x+80
y=-2x+80
;
(2)若工廠將當日所生產(chǎn)的護眼燈全部售出,工廠應生產(chǎn)哪一等級的護眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習冊答案