1. <li id="fzpcp"></li>
          <td id="fzpcp"></td>
          <label id="fzpcp"></label>

          【題目】如圖,在RtABC中,∠C=90°,AC=BC=4cm,動點(diǎn)P從點(diǎn)C出發(fā)以1cm/s的速度沿CA勻速運(yùn)動,同時動點(diǎn)Q從點(diǎn)A出發(fā)以的速度沿AB勻速運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時,點(diǎn)P、Q同時停止運(yùn)動,設(shè)運(yùn)動時間為他t(s).

          (1)當(dāng)t為何值時,點(diǎn)B在線段PQ的垂直平分線上?

          (2)是否存在某一時刻t,使APQ是以PQ為腰的等腰三角形?若存在,求出的值;若不存在,請說明理由;

          (3)以PC為邊,往CB方向作正方形CPMN,設(shè)四邊形QNCP的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

          【答案】(1) (2)存在,或2 (3)

          【解析】

          (1)連接PB,由點(diǎn)B在線段PQ的垂直平分線上,推出BP=BQ,由此構(gòu)建方程即可解決問題;(2)分兩種情形分別構(gòu)建方程求解即可;(3)如圖4中,連接QC,作QEACE,作QFBCF.則QE=AE,,可得QE+QF=AE+EC=AC=4.根據(jù)S=,計算即可;

          1)如圖1中,連接

          中,,

          點(diǎn)在線段的垂直平分線上,

          ,

          ,,

          ,,

          ,

          解得(舍棄),

          時,點(diǎn)在線段的垂直平分線上.

          (2)①如圖2中,當(dāng)時,易知是等腰直角三角形,

          則有

          ,

          解得

          ②如圖3中,當(dāng)時,易知是等腰直角三角形,

          則有:

          ,

          解得

          綜上所述:時,是以為腰的等腰三角形.

          (3)如圖4中,連接,作,作.則,,可得

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,有以下結(jié)論:①abc>0;b2>4ac;4a+2b+c<0;2c<3b;a+b>m(am+b)(m≠1);⑥若點(diǎn)A(,y1),B(,y2)在該函數(shù)圖象上,則y1>y2.其中正確的結(jié)論是________(填入正確結(jié)論的序號).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲從商販A處購買了若干斤西瓜又從商販B處購買了若干斤西瓜.A、B兩處所購買的西瓜重量之比為32,然后將買回的西瓜以從AB兩處購買單價的平均數(shù)為單價全部賣給了乙,結(jié)果發(fā)現(xiàn)他賠錢了這是因為( 。

          A. 商販A的單價大于商販B的單價

          B. 商販A的單價等于商販B的單價

          C. 商版A的單價小于商販B的單價

          D. 賠錢與商販A、商販B的單價無關(guān)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在ABC中,ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個動點(diǎn),過點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點(diǎn)P.

          (1)當(dāng)點(diǎn)P在線段AB上時,求證:APQ∽△ABC;

          (2)當(dāng)PQB為等腰三角形時,求AP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,根據(jù)測試成績(成績都不低于50分)繪制出如圖所示的部分頻數(shù)分布直方圖.

          請根據(jù)圖中信息完成下列各題.

          (1)將頻數(shù)分布直方圖補(bǔ)充完整人數(shù);

          (2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少;

          (3)現(xiàn)將從包括小明和小強(qiáng)在內(nèi)的4名成績優(yōu)異的同學(xué)中隨機(jī)選取兩名參加市級比賽,求小明與小強(qiáng)同時被選中的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀題.

          材料一若一個整數(shù)m能表示成a2-b2(a,b為整數(shù))的形式,則稱這個數(shù)為完美數(shù)”.例如,3=22-12,9=32-02,12=42-22,3,9,12都是完美數(shù)”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整數(shù)),所以M也是完美數(shù)”.

          材料二:任何一個正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p、q是正整數(shù),且p≤q).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定F(n)=.例如18=1×18=2×9=3×6,這三種分解中36的差的絕對值最小所以就有F(18)=.請解答下列問題:

          (1)8______(填寫不是)一個完美數(shù),F(8)= ______.

          (2)如果mn都是完美數(shù)”,試說明mn也是完美數(shù)”.

          (3)若一個兩位數(shù)n的十位數(shù)和個位數(shù)分別為x,y(1≤x≤9),n完美數(shù)x+y能夠被8整除,求F(n)的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一家公司14名員工的月薪(單位:元)是:

          6000 7000 2550 1700 2550 4699 4200

          2550 5100 2600 4400 25100 12400 2600

          1)計算這組數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù);

          2)解釋本題中平均數(shù)、中位數(shù)和眾數(shù)意義

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

          A. 55° B. 60° C. 65° D. 70°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面材料:

          如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).

          觀察圖象可知:

          ①當(dāng)x=﹣3或1時,y1=y2;

          ②當(dāng)﹣3<x<0或x>1時,y1>y2,即通過觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.

          有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.

          某同學(xué)根據(jù)學(xué)習(xí)以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.

          下面是他的探究過程,請將(2)、(3)、(4)補(bǔ)充完整:

          (1)將不等式按條件進(jìn)行轉(zhuǎn)化:

          當(dāng)x=0時,原不等式不成立;

          當(dāng)x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1>;

          當(dāng)x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1<

          (2)構(gòu)造函數(shù),畫出圖象

          設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫出這兩個函數(shù)的圖象.

          雙曲線y4=如圖2所示,請在此坐標(biāo)系中畫出拋物線y3=x2+4x﹣1;(不用列表)

          (3)確定兩個函數(shù)圖象公共點(diǎn)的橫坐標(biāo)

          觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為   ;

          (4)借助圖象,寫出解集

          結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為   

          查看答案和解析>>

          同步練習(xí)冊答案