【題目】如圖,在平面直角坐標(biāo)系中,直線y=-x-3與拋物線y=x2+mx+n相交于A、B兩個(gè)不同的點(diǎn),其中點(diǎn)A在x軸上.
(1)n=3m-9(用含m的代數(shù)式表示);
(2)若點(diǎn)B為該拋物線的頂點(diǎn),求m、n的值;
(3)①設(shè)m=-2,當(dāng)-3≤x≤0時(shí),求二次函數(shù)y=x2+mx+n的最小值;
②若-3≤x≤0時(shí),二次函數(shù)y=x2+mx+n的最小值為-4,求m的值.
【答案】(1)3m-9;(2)m=4,n=3和m=6,n=9;(3)①n;②m=2.
【解析】
(1)求出點(diǎn)A坐標(biāo)(-3,0)代入拋物線解析式即可.
(2)利用配方法求出頂點(diǎn)坐標(biāo),代入直線解析式即可.
(3)分三種情形①當(dāng)≤-3時(shí)②當(dāng)-3<≤0時(shí)③當(dāng)>0時(shí),分別列出方程即可解決.
解:(1)∵點(diǎn)A坐標(biāo)(-3,0)代入拋物線y=x2+mx+n,得9-3m+n=0,
∴n=3m-9.
故答案為3m-9.
(2)∵拋物線為y=x2+mx+3m-9=,
∴頂點(diǎn)為(),
∴,
整理得m2-10m+24=0,
∴m=4或6.
∴m=4,n=3和m=6,n=9.
(3)∵-3≤x≤0時(shí),二次函數(shù)y=x2+mx+n的最小值為-4,y=x2+mx+3m-9= +3m-9,
①當(dāng)≤-3時(shí),x=-3時(shí),y=-4,
∴9-3m+3m-9=-4,
無(wú)解不合題意.
②當(dāng)-3<≤0時(shí),x=時(shí),y=-4,
∴-+3m-9=-4,
∴m=2或-10(舍棄)
∴m=2.
③當(dāng)>0時(shí),x=O時(shí),y=-4,
∴3m-9=-4,
∴m=不合題意舍棄.
綜上所述m=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿軸以每秒個(gè)單位的速度向上移動(dòng),且過(guò)點(diǎn)的直線也隨之移動(dòng),如果點(diǎn)關(guān)于的對(duì)稱點(diǎn)落在坐標(biāo)軸上,沒(méi)點(diǎn)的移動(dòng)時(shí)間為,那么的值可以是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形ABCD,∠EAF=45°.
(1)如圖,當(dāng)點(diǎn)E、F分別在邊BC、CD上,連接EF,求證:EF=BE+DF;
童威同學(xué)是這樣思考的,請(qǐng)你和他一起完成如下解答:證明:將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABG,所以△ADF≌△ABG.
(2)如圖,點(diǎn)M、N分別在邊AB、CD上,且BN=DM.當(dāng)點(diǎn)E、F分別在BM、DN上,連接EF,探究三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如圖,當(dāng)點(diǎn)E、F分別在對(duì)角線BD、邊CD上.若FC=2,則BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長(zhǎng)線相交于點(diǎn)H,連接HA、HC.
(1)求證:四邊形FBGH是菱形;
(2)求證:四邊形ABCH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解我區(qū)初中學(xué)生課外閱讀情況,調(diào)查小組對(duì)我區(qū)這學(xué)期初中學(xué)生閱讀課外書籍的冊(cè)數(shù)進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)我區(qū)共有18000名初中生,估計(jì)我區(qū)初中學(xué)生這學(xué)期課外閱讀超過(guò)2冊(cè)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在△ABC內(nèi),點(diǎn)P、Q、R分別在邊AB、BC、CA上,且OP∥BC,OQ∥CA,OR∥AB,OP=OQ=OR=x,BC=a,CA=b,AB=c,則x=( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為整數(shù)的直角三角形,若其兩直角邊邊長(zhǎng)是方程x2-(k+2)x+4k=0的兩根,求k的值,并確定直角三角形三邊之長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD=60°,點(diǎn)C為弧BD的中點(diǎn),則AC的長(zhǎng)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用水平線和豎起線將平面分成若干個(gè)邊長(zhǎng)為1的小正方形格子,小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)為a,內(nèi)部的格點(diǎn)個(gè)數(shù)為b,則S=a+(b-1).
對(duì)于正三角形網(wǎng)格中的類似問(wèn)題也有對(duì)應(yīng)結(jié)論:正三角形網(wǎng)格中每個(gè)小正三角形面積為1,小正三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱為格點(diǎn)多邊形,如圖是該正三角形格點(diǎn)中的兩個(gè)多邊形(設(shè)格點(diǎn)多邊形的面積為S,該多邊形各邊上的格點(diǎn)個(gè)數(shù)為m,內(nèi)部的格點(diǎn)個(gè)數(shù)為n):
(1)根據(jù)圖中提供的信息填表:
m | n-1 | s | |
多邊形1 | 11 | ______ | 15 |
多邊形2 | 8 | 1 | ______ |
… | … | … | … |
(2)則S與m、m-1之間的關(guān)系為______(用含m、n的代數(shù)式表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com