【題目】如圖,專業(yè)救助船“滬救1”輪、“滬救2”輪分別位于A、B兩處,同時測得事發(fā)地點C在A的南偏東60°且C在B的南偏東30°上.已知B在A的正東方向,且相距100里,請分別求出兩艘船到達(dá)事發(fā)地點C的距離.(注:里是海程單位,相當(dāng)于一海里.結(jié)果保留根號)
【答案】A船到達(dá)事發(fā)地點C的距離是100里,B船到達(dá)事發(fā)地點C的距離是100里.
【解析】
作BG⊥AC于G,由方位角證得BC=AB,根據(jù)等腰三角形的性質(zhì)和正弦、余弦概念求出BC、AC即可.
解:作BG⊥AC于G,
∵點C在A的南偏東60°,
∴∠A=90°﹣60°=30°,
∵C在B的南偏東30°,
∴∠ABC=120°,
∴∠C=30°,
∴BC=AB=100里,
∴BG=BCsin30°=50里,
CG=BCcos30°=50里,
∴AC=2CG=100里.
答:A船到達(dá)事發(fā)地點C的距離是100里,B船到達(dá)事發(fā)地點C的距離是100里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一張矩形紙條ABCD,AB=5cm,BC=2cm,點M,N分別在邊AB,CD上,CN=1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點B,C分別落在點B',C'上.當(dāng)點B'恰好落在邊CD上時,線段BM的長為_____cm;在點M從點A運動到點B的過程中,若邊MB'與邊CD交于點E,則點E相應(yīng)運動的路徑長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題情境:如圖1,已知等腰直角中,,,是上的一點,且,過作于,取中點,連接,則的長為_______(請直接寫出答案)
小明采用如下的做法:
延長到,使,連接,
為中點,為的中點,
是的中位線……
請你根據(jù)小明的思路完成上面填空;
(2)遷移應(yīng)用:將圖1中的繞點作順時針旋轉(zhuǎn),當(dāng)時,試探究、、的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)拓展延伸:在旋轉(zhuǎn)的過程中,當(dāng)、、三點共線時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是反比例函數(shù)圖象上的兩點,軸,交軸于點.動點從坐標(biāo)原點出發(fā),沿勻速運動,終點為.過點作軸于.設(shè)的面積為點運動的時間為則關(guān)于的函數(shù)圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點為D,其圖象與x軸的交點A,B的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點C.以下五個結(jié)論:①2a+b=0;②a+b+c>0;③4a+b+c>0;④只有當(dāng)a=時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值可以有兩個.那么,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰 Rt△ABC 中,AC=BC= 2,點 P 在以斜邊 AB 為直徑的半圓上,M 為 PC的中點.當(dāng)點 P 沿半圓從點 A 運動至點 B 時,點 M 運動的路徑長是( )
A. 2 B. 2 C. π D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是垂直于水平面的建筑物.為測量AB的高度,小紅從建筑物底端B點出發(fā),沿水平方向行走了5.2米到達(dá)點C,然后沿斜坡CD前進(jìn),到達(dá)坡頂D點處,DC=BC.在點D處放置測角儀,測角儀支架DE高度為0.8米,在E點處測得建筑物頂端A點的仰角∠AEF為27°(點A,B,C,D,E在同一平面內(nèi)).斜坡CD的坡度(或坡比)i=1:2.4,求建筑物AB的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2經(jīng)過點A(1,0),B(4,0),交y軸于點C;
(1)求拋物線的解析式(用一般式表示);
(2)點D為y軸右側(cè)拋物線上一點,是否存在點D使S△ABC=S△ABD?若存在,請求出點D坐標(biāo);若不存在,請說明理由;
(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com