【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來(lái)越多的人再次選擇自行車(chē)作為出行工具,小軍和爸爸同時(shí)從家騎自行車(chē)去圖書(shū)館,爸爸先以150米/分的速度騎行一段時(shí)間,休息了5分鐘,再以m米/分的速度到達(dá)圖書(shū)館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖,請(qǐng)結(jié)合圖象,解答下列問(wèn)題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時(shí),距圖書(shū)館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書(shū)館前,何時(shí)與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書(shū)館兩地),請(qǐng)直接寫(xiě)出v的取值范圍.
【答案】
(1)10;15;200
(2)解:線(xiàn)段BC所在直線(xiàn)的函數(shù)解析式為y=1500+200(x﹣15)=200x﹣1500;
線(xiàn)段OD所在的直線(xiàn)的函數(shù)解析式為y=120x.
聯(lián)立兩函數(shù)解析式成方程組,
,解得: ,
∴3000﹣2250=750(米).
答:小軍在途中與爸爸第二次相遇時(shí),距圖書(shū)館的距離是750米.
(3)解:根據(jù)題意得:|200x﹣1500﹣120x|=100,
解得:x1= =17.5,x2=20.
答:爸爸自第二次出發(fā)至到達(dá)圖書(shū)館前,17.5分鐘時(shí)和20分鐘時(shí)與小軍相距100米.
(4)解:當(dāng)線(xiàn)段OD過(guò)點(diǎn)B時(shí),小軍的速度為1500÷15=100(米/分鐘);
當(dāng)線(xiàn)段OD過(guò)點(diǎn)C時(shí),小軍的速度為3000÷22.5= (米/分鐘).
結(jié)合圖形可知,當(dāng)100<v< 時(shí),小軍在途中與爸爸恰好相遇兩次(不包括家、圖書(shū)館兩地).
【解析】解:(1)1500÷150=10(分鐘), 10+5=15(分鐘),
(3000﹣1500)÷(22.5﹣15)=200(米/分).
故答案為:10;15;200.
(1)根據(jù)時(shí)間=路程÷速度,即可求出a值,結(jié)合休息的時(shí)間為5分鐘,即可得出b值,再根據(jù)速度=路程÷時(shí)間,即可求出m的值;(2)根據(jù)數(shù)量關(guān)系找出線(xiàn)段BC、OD所在直線(xiàn)的函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,通過(guò)解方程組求出交點(diǎn)的坐標(biāo),再用3000去減交點(diǎn)的縱坐標(biāo),即可得出結(jié)論;(3)根據(jù)(2)結(jié)論結(jié)合二者之間相距100米,即可得出關(guān)于x的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論;(4)分別求出當(dāng)OD過(guò)點(diǎn)B、C時(shí),小軍的速度,結(jié)合圖形,利用數(shù)形結(jié)合即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0, ).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1 , △BA′O的面積為S2 , S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為3的正方形置于平面直角坐標(biāo)系第一象限,使邊落在軸的正半軸上,直線(xiàn):經(jīng)過(guò)點(diǎn)且與軸交于點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)求的面積;
(3)若直線(xiàn)與軸交于點(diǎn),在軸上是否存在點(diǎn),使得是直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過(guò)1000元,求商場(chǎng)共有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】能夠鋪滿(mǎn)地面的正多邊形組合是( ) .
A. 正三角形和正五邊形
B. 正方形和正六邊形
C. 正方形和正八邊形
D. 正六邊形和正八邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,∠AOB=60°,BD=4,將△ABC沿直線(xiàn)AC翻折后,點(diǎn)B落在點(diǎn)E處,那么S△AED=______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn).
(1)如果圖中線(xiàn)段都可畫(huà)成有向線(xiàn)段,那么在這些有向線(xiàn)段所表示的向量中,與向量相等的向量是 ;
(2)設(shè)=,=,=.試用向量,或表示下列向量:= ;= .
(3)求作:.(請(qǐng)?jiān)谠瓐D上作圖,不要求寫(xiě)作法,但要寫(xiě)出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用長(zhǎng)度一定的不銹鋼材料設(shè)計(jì)成外觀為矩形的框架(如圖①②中的一種).設(shè)豎檔AB=x米,請(qǐng)根據(jù)以上圖案回答下列問(wèn)題:(題中的不銹鋼材料總長(zhǎng)均指各圖中所有黑線(xiàn)的長(zhǎng)度和,所有橫檔和豎檔分別與AD、AB平行)
(1)在圖①中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積為3平方米?
(2)在圖②中,如果不銹鋼材料總長(zhǎng)度為12米,當(dāng)x為多少時(shí),矩形框架ABCD的面積S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(1)(x+y)2﹣(x﹣y)2
(2)
(3)(2x-y+3)(2x+y-3)
(4)(2m+3n)2(2m-3n)2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com